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Preface

The theory of chaos invades a large part of modern physics (celestial mechan-
ics, fluid mechanics, particle accelerators, solid mechanics, etc.), together with
other branches of knowledge (biology, ecology, economics, etc.). In particular,
important results have been obtained in astronomy, especially in the study of
gravitational systems.

In this domain, one kind of chaos is due to interactions between several reso-
nances, which are at the origin of the weak chaos detected in our Solar System,
particularly for the inner planets and, for example, in the attitude variations of
Mars; let us recall that our Earth, thanks to the influence of the Moon, does
not suffer attitude variations (which would be catastrophic for the stability of
the climate) as strong as the latter planet. Theoretically speaking, the KAM
theorem establishes the persistence of invariant tori in weakly perturbed Hamil-
tonian systems; besides, the Nekhorochev theorem allows the confinement over
very long times, under some constraints, of weakly chaotic orbits.

But another kind of chaos, completely independent from interactions between
resonances, is due to close encounters between celestial bodies, and is responsible
for, for example, rapid transfer of “killing” asteroids which cross the orbits of
telluric planets and can hurt them (let us recall, for example, the Cretaceous-
Tertiary event); this can be the cause of ejection of comets and some asteroids
away from the Solar System, too. Moreover, we should remind ourselves of the
use of these close encounters by space missions, during which energy is given
to spacecrafts through “rebounds” on planets (e.g. for the Cassini mission). In
the equations of motion, denominators equal to the square of mutual distances
between the bodies become, during such close encounters, very small and induce
singularities; one of the solutions found for “rubbing out” these singularities
during the integration is called regularization, which uses transformations on
space and time. More recently, Öpik’s works have allowed modeling of this close-
encounter-induced chaos, and have been applied to the study of meteor streams
and to chaotic diffusion of particles in planetary rings. These were the topics
lectured on during the Arc 2000 School in 2000 (organized together with our
colleague Patrick Michel, also from Nice), and which consequently constitute
the main focus of this book.
The early chapters introduce the mathematical methods used in the theory of
singularities in gravitational systems (e.g. regularization).



VI Preface

The second part of the book develops the modelization techniques, in particular
the elaboration of “mappings” in which the basic ingredient consists of intro-
ducing delta functions to represent close encounters as shocks.
Finally, the concluding chapters present the state of the art about the study of
the diffusion of comets, wandering asteroids, meteors and planetary ring parti-
cles. Note that such studies are particularly relevant today, as the advances in
modern observational instrumentation (LINEAR, Spacewatch, etc.) have lead to
an enormous increase in the frequency of discovery of minor bodies in the Solar
System.
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Giovanni B. Valsecchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
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Università di Roma “Tor Vergata”
Via della Ricerca Scientifica 1
I-00133 Roma, Italy
falcolin@mat.uniroma2.it

Froeschlé, Claude
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Singularities, Collisions
and Regularization Theory

Alessandra Celletti

Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca
Scientifica, 1 - I–00133 Roma (Italy)

Abstract. An overview of singularities, regularizations and collisions in gravitational
N–body systems is presented. The concept of singularity pertains to many fields of
science, from the Big Bang theory to black holes, atomic physics, etc. As far as gravi-
tational critical phenomena are concerned, a plethora of collisional events marked the
history and evolution of the solar system. The Earth itself experienced many collisions
from prehistoric age to recent times due to impacts of asteroids or comets. We report
several examples of meteorites and we provide the rate of an impact as a function of
the diameter of the colliding object. The standard classification of Near–Earth Objects
is presented. From the theoretical point of view, the singularity due to binary collisions
between point masses can be handled by means of regularization theory. We review
this technique for the limiting case of a two–body system on a line. Coordinate trans-
formations, the introduction of a fictitious time and the conservation of the energy
are used to regularize the equations of motion. Triple collisions and the concept of
the central manifold are discussed. A simple model, known as the inclined billiard, is
presented to investigate chaotic diffusion. Symbolic dynamics is used to characterize
the motion, which closely resembles the trajectory of a ring particle. The problem of
noncollision singularities is discussed from Painlevé’s conjecture to a 5–body example
of noncollision singularities.

1 Introduction

In mathematics and physics, a singularity denotes an anomalous event. It is not
usually welcomed due to the fact that it represents the point at which theories
become more complicated. Quoting G.L. Schroeder ([19]), “It is essential to
bear in mind that science has not provided explanations for the two principal
starting points in our lives: the start of our universe and the start of life itself”.
The transition instant between nothingness and the beginning of the universe or
of life is a singular event.

Singularities occur in many fields of science, from mathematical analysis to
cosmology through the theory of the Big Bang and the concept of black holes.
We review some of the most important examples involving singular events in
Sect. 2. However, the main purpose of this work is to present an introduction to
singularities in the framework of a gravitational system of point masses. From
Newton’s law, we know that bodies interact by means of a force which is propor-
tional to the inverse of the squared distance. As the two bodies approach each
other, their distance tends to zero and, consequently, the differential equation
describing the dynamics of the system becomes singular when the two bodies
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collide. In the real world the point masses are replaced by bodies of finite (non
zero) size; in this case, we refer to a binary collision whenever the distance be-
tween their centers of mass equals the sum of the radii. The history of the solar
system has been largely marked by such catastrophic events. The widely cratered
surfaces of rocky satellites or planets indicate that collisions were very frequent
in the past, particularly in the early stages of the formation of the solar system.
The Earth itself experienced collisions in different epochs, from prehistoric age
to recent times. Nowadays, the disappearance of dinosaurs is widely attributed
to a collisional event. The occurrence of impacts with the Earth represents a
concrete possibility, due to the large number of asteroids or comets which in-
tersect the orbit of the Earth. Those bodies which come close to our planet are
denoted as “Near–Earth Objects” (NEOs). We report in Sect. 3 several examples
of past impacts, the classification of NEOs and a discussion of the probability
of collisions.

Even in the simplified approach that solar system objects are reduced to point
masses, the description of the dynamics of an N–body system becomes difficult
during close encounters, due to the loss of regularity of the equations of motion.
In order to get rid of this problem, regularization theories ([10], [20], [21], [22],
[24], [26]) have been developed to transform a singular equation into a regular
one. We mainly focus in Sect. 4 on the so–called Levi–Civita regularization, which
is based on an ad hoc transformation of the spatial variables and of time (through
the introduction of a fictitious time), taking advantage of the conservation of
energy. In order to familiarize with this technique, we investigate a simple model
problem consisting of two bodies on a line (i.e., in the limit of orbital eccentricity
equal to one). More realistic models involving triple collisions ([29], [30]) are
reviewed in Sect. 5, where the concept of central configurations and homographic
solutions is introduced. A simple model, known as the inclined billiard, showing
the main features of chaotic scattering inN–body dynamics, has been introduced
by M. Hénon ([8], [9], [17]) and will be presented in Sect. 6.

Collisions are not the only cause of singularities in gravitational systems of
N point masses. As P. Painlevé conjectured, there might exist motions leading
to singularities without experiencing collisions. More precisely, from a result
of H. von Zeipel ([31]) noncollision singularities might occur if the dynamics
becomes unbounded in a finite time. Though Painlevé himself proved that in the
framework of the 3–body problem the only possible singularities are collisions,
the question remains open as far asN–body systems withN ≥ 4 are investigated.
This conjecture remained open for about a century, until Z. Xia ([27]) provided
an analytical proof of the existence of noncollision singularities in a 5–body
model. Suitable occurrences of close–triple encounters are the main ingredient of
the proof. However, we stress that until nowadays there is no proof of Painlevé’s
conjecture in the context of the 4–body problem. Noncollision singularities are
discussed in Sect. 7.

Let us conclude with the following (possibly optimistic) remark: collisions are
definitely dangerous dramatic events. But if we accept the theory that dinosaurs
disappeared due to the impact of a large body with the Earth, we can state that
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mankind could not have evolved without such a tragic event which provoked a
long night lasting more than one year.

There is no Sun without shadow,
and it is essential to know the night.

(Albert Camus)

2 A world of singularities

The concept of singularity does not pertain only to gravitational systems, but it
extends also to many other fields of science, from the atomic structure of matter
to cosmology. In this section we provide some examples of singularities which
arise in different contexts.

From the mathematical point of view, singular points play a fundamental role
in the study of functions of complex variables, since their nature (pole, branch
point, essential singularity) and their distribution characterize the function. Sim-
ilarly, nodes, cusps or isolated points are relevant in the study of algebraic curves,
i.e. the set of points satisfying a polynomial equation. We do not want to insist
too much on the mathematical aspect (for which the existing literature is ex-
tremely wide), but rather point to several physical examples having a singularity
as common feature. The idea of a singularity is often related to the Big Bang
theory, according to which the origin of the universe was a singular point. All
time, space, energy and matter were concentrated in a point with infinite den-
sity. The universe exploded from the initial singularity up to the present state,
whereby galaxies, stars and planets formed. The future of the universe crucially
depends on its total mass: it might undergo an infinite expansion (open uni-
verse), it might reach a stationary state or it might expand until a subsequent
contraction takes place. In the last case, one is faced with a new singularity at
the Big Crunch. Experimental evidence in support of the Big Bang theory, like
the detection of the background microwave radiation, dates back to the second
half of the last century. However, it is worth mentioning that a cosmological
model based on the birth of the universe from a singularity was already present
in Stoic philosophy, denoted with the term ekpyrosis, which means conflagration.
Moreover, Greeks already imagined that a Big Bang process might indefinitely
repeat itself.

General relativity is at the basis of the Big Bang model. Einstein’s theory
provides a description of the gravitational field surrounding a massive body.
The spacetime is curved and the curvature stretches matter in all directions.
Einstein’s solutions can admit a singular point at which the curvature of space-
time is infinite, the simplest being the Schwarzschild solution. This solution is
the starting point of the notion of black holes, whose center is a singularity sur-
rounded by a surface that hides its content from the visible universe. The limiting
surface is called the horizon of events. Although we do not have direct evidence
of the existence of black holes, Hubble Space Telescope images and Chandra
X–ray observations provided many plausible candidates. These anomalies of the
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universe originate from very massive stars which terminate in a supernova explo-
sion. Their gravitational field is so strong, that light cannot escape from them.
Black hole’s singularities came recently into the scene as the entrance key toward
other universes, through a spatiotemporal wormhole connecting two black holes
in different universes.

From the Big Bang and black holes, singularities bridge to the infinitely
small in connection to the atomic structure of the universe. For example, col-
lisions of matter and antimatter produce quarks through annihilation. On the
same scale, chemical reactions are founded upon atomic or molecular collisions,
whose frequency determines the velocity of the reaction. In biology, the processes
of meiosis and mitosis can also be viewed as critical events with different con-
clusions: in the first case the genetic component is equally distributed between
the cells produced by the fission, while in the process of mitosis the new cells
retain the same genetic inheritance as the original one. Let us mention that a
gravitational approach has been also adopted to detect neuronal groups identi-
fied by temporally related firing patterns ([5], [11]). However, singularities are
not welcomed in this case; to this end, a minimal distance between neurons is
introduced, such that the net force is zero. This technique to avoid singularities
is the same as that used to integrate many–body systems, like a large number
of stars belonging to the same galaxy.

3 Past and future collisions in the Solar System

The problem of collisions in our planetary system is far from being a theoretical
topic. The cratered surfaces of many planets and satellites are the imprints
of dramatic events that happened in the early stages of the formation of the
solar system. However, catastrophic encounters belong also to the recent history
of the solar system and definitely they will influence the future evolution of
planets and satellites. Collisions have determined the development of Earth, as
the disappearance of dinosaurs is almost certainly due to an impact of a heavy
object, and might (hopefully not!) influence the future of human lives. These
events might be due to asteroids, comets or meteorites. To be precise, let us give
a qualitative definition of the candidate impact bodies.

• Asteroids are rocky bodies of relatively small size (typically some tens to
hundreds of kilometres) which orbit around the Sun. They form the so–called
asteroidal belt between the orbits of Mars and Jupiter. Collisions between as-
teroids are rather frequent. They can be pulled into the inner solar system by
resonant interactions or by the gravitational influence of Jupiter.

• Comets are relatively small bodies composed mainly of ice, that vaporizes in
the proximity of the Sun giving rise to a tail of dust and gas. Orbits of comets
can be elliptic, parabolic or hyperbolic. It is widely accepted that a reservoir of
comets is the Oort cloud, a region far outside the solar system at a distance of
about 104 − 105 AU (1 AU is the average distance of the Earth from the Sun).
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Comets are usually divided into long–period (on highly eccentric orbits) and
short–period (less than 200 years) comets.

• Edgeworth-Kuiper objects: news from the edge of the solar system. A new group
of icy trans-neptunian objects with diameters of some hundreds kilometres has
been recently observed at a distance of about 35–50 AU.

• Meteoroids are small particles originating from a comet or an asteroid which
orbits the Sun.

• Meteors are the light phenomena due to the interaction of a particle with the
Earth’s atmosphere, giving rise to so–called shooting stars.

• Meteorites are bodies sufficiently large to survive the impact with the Earth’s
atmosphere and to land upon the surface of our planet.

The study of solar system objects coming close to the Earth is particularly
important for several reasons: 1) the determination of their physical and chemical
composition suggests a possible scenario for the origin and evolution of the solar
system; 2) these objects are possible reservoirs of raw materials; 3) they should
be monitored to control the risk of collisions with the Earth.

Concerning the last point, observations show that almost one hundred tons
of interplanetary matter hit the surface of the Earth every day. Most of the
smaller particles are dust grains. Moreover, recent estimates suggest that every
year almost 500 meteorites of at least 100 g arrive on every million km2 of the
Earth’s surface. However, the number of meteorites collected is much smaller.

Impacts of objects of about 50 metres diameter with the Earth occur about
every 100 years in the average. As an example, the Meteor Crater of northern
Arizona formed 50 000 years ago, when an asteroid of about 30 m diameter fell
on the Earth. The crater is about 1.2 km wide and 170 m deep. There are
many astroblames on the Earth provoked by impacts of Near–Earth Objects
(NEO’s). Let us quote another example which puzzles scientists since 30 June
1908. On that day, at 7:17 a.m., an enormous fireball crossed the sky over the
Tunguska region in Siberia. Over 2 000 km2 of the nearby forest were destroyed,
and anomalous earthquakes were detected even at 800 km of distance. A shock
wave reached England after about 5 hours and returned back to Siberia after 24
hours. However, since no remains of the responsible were ever found, scientists
advanced the hypothesis that the colliding body was a comet evaporized in the
atmosphere. More recently, it was conjectured that the killer object was a rocky
asteroid of about 60 metres diameter, which exploded and disintegrated 5–10
km from the Earth’s surface.

The impact with the Earth of a NEO of about 1 km in diameter is evaluated
to occur every few hundred thousand years in the average. The energy released
during the impact of a rocky object of that size can be computed evaluating the
kinetic energy as T = 1

2mv2, where one can assume that the density is about
3 g/cm3 and the typical velocity is about 20 km/s. Such an estimate leads to
the prediction that the energy released would be of the order of magnitude of
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some million nuclear explosions. A larger object (say, 10–20 km diameter) would
of course threaten life on Earth, provoking a climatic and biological disaster on
planetary scale, like the one which caused the disappearance of the dinosaurs.
The evidence that this event was generated by an asteroidal collision dating back
65 million years was recently attributed (thanks to the images of the shuttle
Endeavour) to the discovery of a large crater (about 180 km) in the depth of the
ocean close to the Yucatan peninsula. In honour of the Maya civilization, the
crater was named “Chicxulub”, the devil’s tail. The abrupt fall in temperature,
the decrease of the sea level and the transformation of the vegetation caused
the extinction of about 65–75% of the living species. A similar event dating back
210 millions years and testified by the Manicouagan crater in Quebec might have
been the cause of a mass extinction of marine species at the end of the Triassic
period.

Concerning other bodies of the solar system, astroblames are evident from
any picture of rocky planets or satellites. In 1994, we were extremely lucky to
witness the spectacular collision of the Shoemaker–Levy 9 comet with Jupiter.
The comet fragmented in several pieces before the impact, due to the gravita-
tional influence of the giant planet. The first fragment, which travelled at a speed
of about 200 000 km/h caused the emission of hot matter to a distance of 3 000
km from Jupiter’s surface. Finally, let us mention that one of the most impor-
tant theories on the formation of the Moon takes into account the possibility
that our satellite formed from a catastrophic impact of a Mars–size object with
the Earth. Lunar rocket samples collected during the Apollos missions support
the hypothesis that a big body crashed into the Earth during its early formation
stages, provoking the ejection of material which, after coagulation, gave origin
to our Moon.

Coming back to the Earth, the most dangerous objects are those which ap-
proach our planet during their travel in the solar system. For example, the
asteroid 4179 Toutatis of 2–3 km of diameter is one of the most alarming ones,
since every 4 years it crosses the Earth’s orbit. In December 1992, 4179 Toutatis
was at a distance of 3.6 million kilometres and it will come as close as 1.5 million
kilometres in September 2004. We can collect the above examples providing an
estimate of the probability of an impact as a function of the diameter of the
colliding object (see Table 1). However, we have to bear in mind that we cannot
rely on probability to exclude the possibility of an impact on Earth in the near
future. As an example, we mention that in 1971 the roof of a house in Wethers-
field (Connecticut) was damaged by an object of a mass of 340 g. Eleven years
later, an object of 2.5 kg destroyed another roof in the same town!

We report in Table 2 the characteristics of the most important craters found
on Earth ([16]). In particular we provide the diameter of the main crater (since
the impact can generate more than one crater) and the year of the discovery.

The biggest meteorite discovered on the Earth is still in the place where it
arrived in prehistoric times, namely in Hoba West (Southwest Africa). Its weight
amounts to about 61 tons. A list of the biggest meteorites is given in Table 3
([16]).
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Table 1. Impact frequency as a function of the diameter d of the colliding body.

d (km) Frequency (years)

d > 10 50 000 000
1 < d < 10 500 000
0.1 < d < 1 5 000

0.03 < d < 0.1 500

Table 2. Most relevant craters on Earth: the diameter refers to the main crater.

Name Diameter (m) Year of discovery

Meteor Crater, Arizona 1 265 1891
Wolf Creek, Australia 850 1947
Henbury, Australia 200×110 1931
Boxhole, Australia 175 1937
Odessa, Texas 170 1921
Waqar, Arabia 100 1932
Oesel, Estonia 100 1927
Campo del Cielo, Argentina 75 1933
Dalgaranga, Australia 70 1928
Sichote–Alin, Siberia 28 1947

Table 3. Biggest meteorites and place of discovery.

Name Place of discovery Weight (tons)

Hoba–West Africa 61
Ahnighito Greenland 30.9
Bacuberito Mexico 27.4
Mbosi Tanganyika 26.4
Agpalik Greenland 20.4
Armanty Mongolia 20
Willamette USA 14
Chupaderos Mexico 14
Campo del Cielo Argentina 13
Mundrabilla Australia 12
Morito Mexico 11
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Near–Earth Objects are commonly defined as asteroids or comets, such that
their perihelion distance q is less than 1.3 AU. Moreover, denoting by a the
semimajor axis, by Q the aphelion distance and by P the orbital period, one has
the following classification:

• Near–Earth Comets (NECs): short–period comets with P < 200 years and
q < 1.3 AU.

• Near–Earth Asteroids (NEAs): asteroids with perihelion distance q < 1.3 AU.
The NEAs are further classified as

• Atens (named after asteroid 2062 Aten) are Earth–crossing asteroids with
a < 1 AU and Q > 0.983 AU;

• Apollos (named after asteroid 1862 Apollo) are Earth–crossing asteroids
with a > 1 AU and q < 1.017 AU;

• Amors (named after asteroid 1221 Amor) are Earth approaching asteroids
with a > 1 AU and 1.017 < q < 1.3 AU.

• Potentially Hazardous Asteroids (PHAs): NEAs with Minimum Orbit Inter-
section Distance (MOID) with the Earth less than or equal to 0.05 AU and with
an absolute magnitude less than or equal to 22.

We remark that the MOID introduced in the definition of PHAs is a measure
of the possibility that an asteroid may make alarming close approaches with the
Earth. In other words, it provides the local minimum of the distance of the NEO
to the Earth. Using suitable variables introduced by the astronomer E. Öpik,
an approximate expression for the local MOID at a specific node can be derived
(see the chapter by G.B. Valsecchi, in this book). The secular evolution of the
orbits of NEOs can be approached through an appropriate averaging principle
as presented in the chapter by G.F. Gronchi, in this book. Let us mention that
another measure of the risk of collisions of asteroids or comets with the Earth is
the Torino impact scale, which ranges from zero (implying no real damages) to
ten (involving a climate catastrophe). The impact probability can be calculated
on the basis of experimental observations or theoretical analyses. As an example,
we report in Table 4 some asteroids with possible impact solutions which are
consistent with recent observations. The data are taken from the web site of
NEODyS (http://newton.dm.unipi.it/neodys/).

The trajectory of a NEO can be determined statistically, within a region of
confidence. However, the semimajor axis, the eccentricity and the inclination of
the orbit vary only on a long timescale and can be considered as almost fixed
over a short time. Therefore, it turns out to be useful to group the objects within
different dynamical classes. This task is quite difficult as far as planet–crossing
orbits are concerned, due to their high degree of chaoticity and due to the many
close encounters with one (or more) planets. However, from the mean evolution
of the orbits, one can derive a probability of collision as it was suggested by
Öpik. The conditions required for an impact between a NEO and the Earth to
occur are the following:
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Table 4. Asteroids with possible impact solutions with the Earth: a denotes the semi-
major axis, e the orbital eccentricity, i the inclination, H the absolute magnitude and
the MOID is referred to the Earth.

Name a(AU) e i(o) H MOID(AU)

1994GK 1.9915 0.6122 5.723 24.197 0.00292
1994UG 1.2293 0.2581 4.682 21.134 0.01171
1994WR12 0.7566 0.3979 6.856 22.107 0.00188
1995CS 1.8732 0.7643 2.556 25.501 0.00134
1997TC25 2.5341 0.6136 0.247 24.665 0.00132
1998OX4 1.5857 0.4878 4.547 21.328 0.00148
2001AV43 1.2771 0.2381 0.279 24.322 0.00154
2001SB170 1.3457 0.4580 34.148 22.145 0.00413
2001TY1 2.4117 0.5890 5.820 24.856 0.00488
2001UD5 2.2751 0.6654 2.530 22.205 0.00266

i) the orbits of the Earth and of the NEO must cross, even if the mutual incli-
nation is different from zero;
ii) the nodal distance between the two orbits must be smaller than the dimension
of the Earth;
iii) the NEO and the Earth must arrive at the same time at the intersection
between the two orbits.

The computation of the probability of impact, the monitoring of the known
NEOs and the search for new possible dangerous objects is a primary goal which
brings together astronomers, mathematicians, physicists, etc. As geological his-
tory (from prehistoric age to recent times) showed us, impact events are far from
being unusual. To this end, several groups of scientists are developing projects
to make Earth safer. Let us mention, for example, the works of the NASA, Jet
Propulsion Laboratory, Spaceguard Foundation, Space Mechanics Group of the
University of Pisa and the Minor Planet Center of the International Astronom-
ical Union.

4 Regularization theory

Throughout the remaining sections we consider N–body systems composed by
N point masses. The occurrence of a collision is a very difficult subject to handle
from the mathematical point of view, since the equations of motion cease to be
valid at the singularity. As a consequence of the conservation of the energy, since
the potential function is infinite at collision, the velocity becomes itself infinite.
The description of the motion fails at the singularity, but what is even worse, it is
rather difficult to investigate the dynamics in a neighbourhood of the singularity.
Even excluding a collision, it is anyway troublesome to explore the trajectories
corresponding to close approaches: the integration step required in a numerical
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approach is usually very small, thus requiring a huge amount of computational
time.

A way to overcome these difficulties has been explored by several mathemati-
cians at the end of the XIX century and at the beginning of the XX century.
Among others, T. Levi–Civita, G.D. Birkhoff, P. Kustaanheimo, E.L. Stiefel,
K.F. Sundman, C.L. Siegel, J.K. Moser, J. Waldvogel ([10], [20], [21], [22], [23],
[24], [26], [28]) contributed to develop a theory of regularization for the study
of the motion at a collision. Planar and spatial three–body problems have been
investigated, as well as the occurrence of binary or triple collisions. At the be-
ginning of the last century, K.F. Sundman was able to prove that a solution
which does not experience a collision can be expanded as a power series, which
converges at any time ([24]). In the case of a binary collision at time t = tc, he
proved that the solution can be written as a convergent power series in terms of
(tc − t)1/3. It is impossible to holomorphically extend the solution up to tc, but
Sundman found a real analytic continuation for t > tc, using complex analytic
continuation around tc. Let us mention that a general definition of regularization
was given by R. Easton ([4]), who developed the so–called block regularization
in order to investigate whether neaby orbits provide an extension for an orbit
ending into a collision. This procedure of pasting orbits is denoted as Easton’s
method.

Instead of using Sundman’s or Easton’s approach, we will rather be concerned
with the Levi–Civita regularization, which is based upon three main steps:

• the introduction of a suitable change of coordinates (typically the Levi–Civita
transformation);

• a stretching of the time scale, to get rid of the fact that the velocity becomes
infinite (namely, the introduction of a so–called fictitious time);

• the conservation of the energy, to transform the singular differential equations
into regular ones (i.e., the study of the Hamiltonian system in the extended
phase space).

It is important to bear in mind that the aim of regularization theory is
to transform singular differential equations into regular ones. As an example,
consider the second order differential equation

ẍ (1− sin t) + ẋ− x sin t+ 2 sin t = 0 ,

which can be written as

ẍ =
1

1− sin t
(− ẋ+ x sin t− 2 sin t

)
.

The equation is singular for t = π
2 mod 2π, but it has a regular solution,

x(t) = sin t + cos t .

Since the description of the regularizing transformations is technically compli-
cated in the general setting of the three–body problem, we propose a preliminary
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presentation of such theory using a very elementary (physically trivial) model
problem. More precisely, we start by considering the problem of two bodies mov-
ing under their mutual gravitational attraction. In analogy to [22], we further
simplify our task by assuming that the two bodies move on a straight line. Let
us retrace the above mentioned steps necessary for regularization, looking at the
effect of each transformation on the dynamics of the colliding object. Moreover,
at each step we devote particular attention to the case when the energy is zero.

Let P1 and P2 be two bodies with masses m1 and m2. We fix a reference
frame with the axes parallel to an inertial system and with the origin coinciding
with the body P2. We restrict P1 to move on the x–axis. Let K be the product of
the gravitational constant G with the sum of the masses, i.e. K = G(m1 +m2).
Then, the motion of P1 with respect to P2 is governed by the differential equation

ẍ+
K

x2
= 0 , (1)

which admits the integral of energy

h =
K

x
− 1

2
ẋ2 .

Denoting the velocity by y = ẋ, one obtains y = ±
√
2(Kx − h), showing that it

becomes infinite at the collision (x = 0) and it is zero for x = K
h . If the initial

velocity is positive, then P1 gets indefinitely far away from P2. On the other
hand, if the initial velocity is negative the collapse of P1 on P2 is unavoidable.
In Fig. 1 we show the integration of the equation of motion by a 4th order
Runge–Kutta method with time step equal to 10−3, for h = 0.5 and the initial
position x0 = 1 (K has been normalized to one). The graphs of the variation
of the position with the time and the phase space diagram are presented for a)
positive initial velocity and b) negative initial velocity.

Let us now consider the case h = 0. From ẋ = ±
√

2K
x , the equation of motion

can be analytically integrated as

x(t) =
[
x
3/2
0 ± 3

2

√
2K t

]2/3
, (2)

where x0 > 0 denotes the initial position at time t = 0. The plus or minus sign
has to be taken according to whether the initial velocity is positive or negative;
in the latter case the solution is valid up to the collisional time, say t = tc. The
graph in Fig. 2 shows that the solution with positive initial velocity indefinitely
departs, while the solution with negative initial velocity tends to the singularity
x = 0. The aim of the regularization procedure is the analogue of removing a
branch point in the field of complex variables, which is a standard technique
known as uniformization.

• Change of coordinates:
In the same spirit of the regularizing transformations for the general case, we
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Fig. 1. Integration of Equation (1) for h = 0.5, x0 = 1. a) Positive initial velocity; b)
negative initial velocity.

perform a change of coordinates, replacing x by

x = u2 .

Although this transformation is not really necessary to regularize the motion of
the two–body problem on a line, we prefer to include this step in our discussion,
since its generalization to more–dimensional spatial coordinates in the framework
of the three–body problem is an essential ingredient, known as the Levi–Civita
transformation. From (1), the equation of motion in the u–variable becomes

ü+
1
u
u̇2 +

K

2u5
= 0 , (3)

while the energy equation is

h =
K

u2
− 2u2u̇2 ,

from which there follows that

u̇ = ±
√

K

2u4
− h

2u2
.
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Fig. 2. The solution (2) for h = 0, x0 = 1. The portion of the curve above x = 1
corresponds to taking the positive sign in (2); the portion below x = 1 corresponds to
the negative sign in (2).

We immediately recognize that the equation is still singular and that the velocity
is infinite at the singularity (u = 0). The graph of u as a function of the time, as
well as that of u versus u̇, are very similar to those previously shown in Fig. 1.

In the case h = 0, the solution can be given explicitly as

u(t) =
[
u30 ± 3

√
K

2
t
]1/3

,

where u0 = u(0) represents the initial condition at t = 0 and we adopt the plus
or minus sign according to the direction of the velocity.

• Introduction of the fictitious time:
In order to get rid of the increase of the speed to infinity at collision, we multiply
the velocity by an appropriate scaling factor which is zero at the singularity. In
other words, we introduce a fictitious time s defined by

dt = x ds = u2 ds or
dt

ds
= x = u2 , (4)

namely

s− s0 =
∫ t

t0

1
x(τ)

dτ

(see (7) below). Then, by introducing the notation u′ ≡ du
ds , one has

u̇ =
du

dt
=

1
u2
u′ ,

ü =
1
u2

d

ds
(
1
u2
u′) =

1
u4
u′′ − 2

u5
u′2 .
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The equivalent of (3) becomes

u′′ − 1
u
u′2 +

K

2u
= 0 , (5)

while the energy is transformed to

h =
K

u2
− 2u′2

u2
, (6)

from which the new velocity is

u′ = ±
√

1
2
(K − hu2) .

The solution for h = 0 can be easily found from u′ = ±
√

1
2K, namely

u(s) = u0 ±
√

1
2
K s ,

where u0 is the initial value of u at s = 0, while (here and in the following
formula) the plus or minus sign must be chosen in accordance with the sign
of u′. Furthermore, from (4) we obtain the dependence of the time t upon the
fictitious time s as

t = u20s+
K

6
s3 ±

√
1
2
K u0 s

2 . (7)

The graph of t = t(s) (with u0 = 1) is presented in Fig. 3.

• Using the energy integral:
Finally, we use the fact that the energy is preserved by inserting (6) in (5) to
obtain

u′′ +
h

2
u = 0 ,

which is the equation of the harmonic oscillator with frequency ω =
√

h
2 . We

therefore have succeeded in obtaining a regular differential equation, whose so-
lution is a periodic function of s. In the elliptic problem, it can be shown that
the fictitious time s is essentially the eccentric anomaly.

The regularization of the two–body problem on a line contains all the main
ingredients to perform regularization of more sophisticated (and realistic) prob-
lems. Next step is to consider the simplest three–body model, i.e. the planar,
circular, restricted three–body problem. Denoting by P1, P2 ,P3 three bodies
with masses m1, m2, m3, we assume that
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Fig. 3. Graph of t = t(s) as in (7) for h = 0, x0 = 1 after the introduction of the
fictitious time.

i) the mass of one particle, say P3, is much smaller than the others (”restricted”
problem) so that it does not influence the motion of the primaries P1 and P2;
ii) the motion of the three bodies takes place in the same plane (”planar” prob-
lem);
iii) the relative motion of the primaries is a circle (”circular” problem).

It is convenient to write the equations of motion of P3 under the gravitational
influence of P1 and P2 in a synodic reference frame, which rotates with the
angular velocity of the primaries. The classical setting puts the origin at the
center of mass, and the fixed positions of P1 and P2 are on the axis of the
abscissas. Let us denote by (q1, q2) the coordinates of P3 in the synodic frame
and by (p1, p2) the corresponding momenta. The motion of P3 is governed by
the Hamiltonian

H(p1, p2, q1, q2) =
1
2
(p21 + p22) + q2p1 − q1p2 − m1

r1
+
m2

r2
,

where m1, m2 are the masses of P1, P2 and r1, r2 denote the distances of P3
from P1 and P2, respectively. A singularity occurs when P3 collides with P1
(i.e., r1 = 0) or with P2 (i.e., r2 = 0). The first step is therefore to regular-
ize the collision with one of the primaries. This task is achieved by retracing
the technique introduced for the rectilinear two–body problem. The change of
coordinates must be replaced now by the transformation introduced by Tullio
Levi–Civita (born in Padua 1873, died in Rome 1941). Like many other math-
ematicians of his time, Levi–Civita contributed to many fields of mathematics,
from differential geometry to analysis, relativity and mechanics. A crater of our
Moon is named after him. The transformation which bears his name is the first
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tool to regularize the equations of motion and takes the form:

q1 = Q2
1 −Q2

2 + α , q2 = 2Q1Q2 ,

where α = m2 is used in order to regularize a collision with P1, while α = −m1
handles the case of a collision with P2. Then, the fictitious time is introduced
by dt = D ds, where D = 4(Q2

1+Q2
2) and finally, the conservation of the energy

(i.e., the definition of the Hamiltonian in the extended phase space) allows to
obtain the regularized equations of motion (further details can be found in the
chapter by A. Celletti, in this book).

A slightly different technique must be used when we allow the three bodies to
move in space, rather than being confined to a plane. More precisely, the Levi–
Civita transformation cannot easily be extended from 2 to 3 dimensions. The
physical space must be embedded in a 4–dimensional space, by introducing an
extra variable. The study of the collisions in the spatial case can be performed by
means of the so–called Kustaanheimo-Stiefel regularization ([10]). An alternative
technique to regularize the equations in the planar and spatial cases is provided
by the radial–inversion transformation developed in [20].

There still remains the task of simultaneously regularizing both collisions
with the primaries. This problem was solved in [1] for the planar case and in
[23], [28] for the spatial case. We refer to the chapter by G. Della Penna, in this
book, for further details, where the problem is studied again in the framework
of the planar, circular, restricted three–body problem.

All regularizing procedures outlined before required that the time is replaced
by a fictitious time. However, it is worth mentioning that a different approach can
be adopted substituting the time with the generalized eccentric anomaly. This
procedure turns out to be efficient while dealing with very elongated orbits. A
comparison between the two methods, as well as an application of perturbation
techniques (to integrate the equations to first order), is presented in the chapter
by C. Falcolini, in this book.

We have overviewed the regularization for the 2 and 3–body problems. How-
ever, the simulation of more general systems, like the motion of stars in a galaxy,
requires the study of N–body problems with large N . In this case, it is difficult
to apply the above techniques, and a way to overcome this hindrance is to apply
Plummer’s method ([3], [15]). A positive softening length is introduced to elim-
inate the singularity. More precisely, one replaces the gravitational force on the
j–th body (1 ≤ j ≤ N) by Plummer’s force defined as

Fj ≡
N∑
i=1

xj − xi
(|xj − xi|2 + ε2)3/2

, (8)

where xi denotes the barycentric Cartesian position of the i–th particle, and the
softening length ε defines the degree of smoothing. One immediately recognizes
that the function (8) does not lead to singularities at the collision and can be
used in an effective way in numerical simulations of large N–body systems ([3],
[15]).
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When the number of bodies becomes infinite, namely in the limit when N →
∞, a different approach must be used in the framework of kinetic theory. We
refer to the chapter by Y. Elskens, in this book, for further details.

5 Triple collisions and central configurations

So far we have focused on the mechanism of binary collisions. The degree of
difficulty in dealing with more complicated models increases immediately as soon
as we are concerned with triple collisions (see the chapter by J. Waldvogel, in
this book). Indeed, one finds an extremely chaotic behaviour, such that a small
variation of the initial conditions leads to large effects on the successive dynamics.
While regularization always works for binary collisions, triple collisions cannot
be regularized, except for a negligible set of masses (see [12], [13]). A remarkable
result on N–body collisions is due to K.F. Sundman ([24]), which involves the
definition of total angular momentum. Let mj , j = 1, ..., N , be the masses of the
N bodies and let xj ∈ R3 be their barycentric positions.

Definition:We define the total angular momentum (with respect to the origin)
of N bodies as the quantity

C =
N∑
j=1

mj xj ∧ ẋj ,

where x ∧ y denotes the cross product between the vectors x and y.

A necessary condition for collisions is stated by the following

Theorem (Sundman): If at a time t = tc all bodies collide at the origin, then
C = 0 for all times before the collision time tc.

A key role in the study of triple collisions is played by the so–called central
configurations, which we are going to define as follows. Let U ≡ U(x) (x =
(x1, ..., xN ) ∈ R3N\⋃1≤j<k≤N{x ∈ R3N/xj = xk}) be the force function

U(x) ≡
∑

1≤j<k≤N

mjmk

|xj − xk| ;

then the equations of motion can be written as

mj ẍj =
∂U(x)
∂xj

for j = 1, ..., N .

Definition: A configuration x ∈ R3N is called a central configuration, if there
exists a constant µ such that

∇U(x) = µ Mx ,
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where M is the 3N × 3N diagonal matrix

M = diag(m1,m1,m1, ...,mN ,mN ,mN ) .

For N = 3 examples of central configurations are given by the collinear
(Eulerian) and the triangular (Lagrangian) configurations. The latter case cor-
responds to the position occupied by the Trojan and Greek asteroids forming an
equilateral triangle with Jupiter and the Sun.

Definition: A solution x = x(t) is called homographic, if the N bodies form
a configuration which remains similar to itself for any time. In formulae: there
exist a positive real function r = r(t) and a 3 × 3 orthogonal matrix Ω(t) such
that

xi(t) = r(t) Ω(t) xi(0) , i = 1, ..., N .

Definition: A homographic solution x = x(t) is called homothetic, if the config-
uration expands or shrinks without rotation, i.e. if Ω(t) reduces to the identity
matrix.

The relation between central configurations and homographic solutions is
given by the following statement, which generalizes the result on the Lagrangian
solutions for N = 3: a necessary and sufficient condition for homographic so-
lutions to occur is that the N bodies form at any instant the same central
configuration.

A geometrical description of triple collisions is provided by the following
result (see [24]):

Theorem: The solutions tending to a triple collision asymptotically approach
a central configuration.

We refer the reader to [2] for further discussion of this subject.

6 Chaotic diffusion: the inclined billiard

The procedure to approach a realistic physical problem is to start from a simple
approximation. Along this direction, the investigation of the dynamics of the
solar system starts from the simplest case of the two–body approximation, for
which the solution is given by the Keplerian laws. The next step requires to
add one more planet, leading thus to the three–body problem. Step by step, one
adds new degrees of difficulty, namely more bodies of the solar system (planets,
satellites, comets, asteroids), the asphericity of such bodies, tides, solar wind
and so on.

However, even the simplest nontrivial model may present difficulties in the
analytical treatment of the equations of motion. Indeed, we know that the three-
body problem, even the restricted, circular, planar model, is known to be non–
integrable after H. Poincaré ([18]). However, due to the fact that the mass ratio
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of any planet to the Sun is rather small (at most of the order of 10−3 in the
case of Jupiter), the restricted three–body problem is almost integrable, with
the perturbing parameter given by the mass ratio of the primaries. We can
therefore apply perturbation techniques to get an approximation of the equations
of motion. From the numerical point of view, one can reduce the numerical
integration of the equations of motion to the computation of the Poincaré map,
which drastically reduces the computational effort as well as the difficulties in
the interpretation of the numerical inspection of the dynamics.

Such a procedure of reducing a problem to a simple model which retains
all the essential features of the original problem is very common in Celestial
Mechanics and it was adopted by M. Hénon to describe collisions and chaotic
scattering of gravitational systems. His model is known as the inclined billiard
(see [8], [9], [17] and the chapter by J.–M. Petit, in this book), and it deals
with the phenomenon of diffusion, occurring whenever two particles interact in a
complicated way and separate after some time. Let us remark that the scattering
problem is common to many other fields of physics: from molecular physics,
concerning the collision between an atom and a molecule, to the scattering of an
electron in the Earth’s magnetic field, to geophysics as charged particles emitted
from the Sun come closer to the Earth.

However, the most striking example is provided by Saturn’s rings, which be-
have like a chaotic dynamics due to the extreme sensitivity to initial conditions.
Let us consider the case of two particles of Saturn’s rings, say P1 and P2, with
comparable masses; they describe almost circular orbits. This model is closely
related to Hill’s problem. The interaction of the two minor bodies, and their pos-
sible collision, leads to a very complicated dynamical behaviour. Let us denote
by h their minimal or impact distance. As far as h is large, the trajectories are
weakly perturbed, while for h small one observes a horseshoe orbit. Regular and
transition regions are the outcome of a numerical investigation. In the transition
regime, the trajectory changes drastically even for small deviations of the impact
parameter; the experiments show discontinuities in the values of h at which the
orbit undergoes drastic changes. However, magnifying a transition region, one
observes that it is itself divided into regular and transition regimes, providing a
self-similar (or Cantor) structure. Hill’s problem presents an intrinsic difficulty,
due to the fact that the asymptotic periodic orbits have very large eigenvalues,
thus leading to a highly unstable motion. On the basis of this remark, M. Hénon
developed a simple model, the inclined billiard with gravity, which has the es-
sential features of Hill’s problem. The billiard table is assumed to be an inclined
plane, and the particle bounces elastically on two disks. This particle, subject
to a constant acceleration, is reduced to a point–mass without rotational effects
and friction is neglected. After its release with zero initial velocity, the particle
can have different behaviours according to the initial position (see Fig. 4).

If the particle starts exactly on the vertical drawn from A or B, the trajectory
is exactly periodic. Let (x0, y0) = (h, 0) be the initial conditions, with h denoting
the impact distance. For small variations of h, one can have an escape on the left
or on the right, or a bouncing between the two disks (followed possibly by an es-
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A B

Fig. 4. The inclined billiard.

cape). The limit of large disks is also considered, and the corresponding problem
is described by a piecewise linear mapping. The overall picture of the dynamics
associated with this simple problem is very similar to that of the particles in Sat-
urn’s rings, showing regular and transition regions, discontinuities, self–similar
structure. Symbolic dynamics according to the direction of the rebounding has
been introduced to describe the model. More precisely, any trajectory can be
represented by a sequence of 0’s or 1’s, where 0 corresponds to a rebounding to
the left and 1 to the right. Having fixed an arbitrary sequence of reboundings,
one can construct an orbit with the specified properties. Such a Bernoulli system
is highly chaotic. We refer to the chapter by J.–M. Petit, in this book, for further
details.

7 Noncollision singularities

So far, we discussed the problem of singularities in gravitational systems which
are due to collisions. However, collisions might not be the only source of singular-
ities. In other words, one might ask whether there exist motions which become
unbounded in finite time. This concept might seem counterintuitive and puzzled
celestial mechanicians for more than a century. We anticipate that the question
has been recently solved by Z. Xia ([27]) for a 5–body problem, but it still re-
mains open in the case of four bodies. The fact that a body can go to infinity in
finite time can be understood by means of the following example: suppose that
a particle is repeatedly accelerated by a slingshot effect, such that it covers a
unit distance in 1 second, the second unit distance in half time, than in 1/4 of
a second and so on. The time to reach infinity is given by the geometric series∑∞
j=0

1
2j , which is equal to 2 seconds!

Let us start with the precise definition of noncollision singularities (for a
more detailed description of the results, see the second chapter by C. Falcolini,
in this book).
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Definition: A collision singularity occurs at time t = tc if the position vector x
has a definite limit as t tends to tc. A noncollision singularity (or pseudocollision)
occurs at time t = tc if the position vector x is unbounded as t tends to tc.

At the beginning of the XX century H. von Zeipel showed that a system can
experience a noncollision singularity, only if the motion becomes unbounded in
finite time. More precisely, denoting the polar moment of inertia (with respect
to the origin) of an N–body system as the quantity

I(x) ≡ 1
2

N∑
j=1

mj |xj |2 ,

von Zeipel proved that if
lim
t→tc

I(x(t))

is finite for some tc being a singularity, then the singularity is due to a collision
([31]). The converse is also true, in the sense that a noncollision singularity can
occur if one or more bodies escape to infinity in finite time. In this case, the
escaping body should acquire infinite kinetic energy, which seems impossible.
However, Z. Xia provided an explanation by noting that since there is no lower
bound on the potential energy, there is no upper bound on the kinetic energy.

The first step toward understanding noncollision singularities was provided
by Paul P. Painlevé (Paris, 1863–1933). Painlevé combined a scientific and po-
litical career. He studied at the École Normale Supérieure and became member
of the Académie des Sciences in 1900. Ten years later he entered the French par-
liament, attending especially to military problems. He was appointed minister
several times, and he was even a candidate for the presidency of the republic.
Due to his scientific and political achievements, he was buried in the Pantheon in
Paris. His works on the gravitational singularities gave a strong impulse toward
the comprehension of the problem. In particular, he proved that in the case of
the three–body problem a singularity is always due to a collision. A century–old
conjecture due to him opened the way to the study of noncollision singularities:

Painlevé’s conjecture: The N–body problem with N ≥ 4 admits noncollision
singularities.

Triple collisions play an important role in the proof of Painlevé’s conjecture.
A first remark is due to V. Szebehely ([25]) in the framework of the so–called
Pythagorean problem, which concerns the problem of finding the motion of three
bodies of masses 3, 4, 5 initially at rest at the vertices of a Pythagorean triangle
with sides 3, 4, 5 as in Fig. 5.

A numerical integration of the equations of motion starting with zero initial
velocities shows that a near–triple collision occurs after some time. Afterwards,
a binary system composed of the masses 4 and 5 appears, while the third mass
escapes to infinity with high velocity. The triple approach provides a sort of
slingshot effect, such that the third particle gets farther from the binary. Such
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Fig. 5. The Pythagorean problem.

behaviour in the context of the planar three–body problem was also discussed
by J. Waldvogel ([29], [30]).

The idea pursued by most people involved in Painlevé’s conjecture was to
build a system of N ≥ 4 bodies, where one particle oscillates back and forth
between the others, increasing their distances at each oscillation, so that the
motion becomes unbounded in finite time. Evidence that collisions may accu-
mulate until a body is ejected to infinity in finite time was given by J. Mather
and R. McGehee ([14]). They considered a 4–body problem on a straight line
(see Fig. 6); suppose that particles 1 and 2 are close together, well spaced from
particle 4, while the third one travels back and forth. At each near–triple colli-
sion of bodies 1, 2, 3, the third particle is expelled toward 4. A collision between
3 and 4 rebounds 3 toward 1 and 2. If the next near–triple collision occurs at
the right time, particle 3 is again ejected toward 4 with even higher velocity,
until the size of the system (i.e., the moment of inertia) increases to infinity in
finite time. This is an example of a pseudocollision singularity, except that no
collisions among the particles should occur!

1 2 3 4

Fig. 6. The 4–body example by Mather and McGehee.

A 5–body attempt to settle Painlevé’s conjecture was presented by J.L.
Gerver in [6]. However, the first complete example of noncollision singularities
was successfully provided by Z. Xia ([27]), and it involves at least 5 bodies. His
powerful model is the following (see the chapter by C. Falcolini, in this book,
for further details). Consider five bodies with masses m1 = m2, m3, m4 = m5.
Suppose that bodies 1, 2 and 4, 5 are in parallel planes, where each pair moves
on a highly eccentric elliptical orbit. Particle 3 moves along an axis perpendic-
ular to the planes of motion of the other bodies. The third body must arrive
at the right time to engage in a near–triple collision with 1, 2, and it must be
rebounded toward 4, 5 with sufficiently large velocity. An analogous effect must
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be achieved by particles 4, 5, rebounding 3 toward 1, 2, until it gains enough
kinetic energy to be ejected to infinity in finite time.

A similar example of noncollision singularity involving 3N bodies for a large
N was presented in [7]. However, there still remains the question of whether
Painlevé’s conjecture is valid for N = 4. At present time no proof is available,
and we leave any attempt to the reader...
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The Levi–Civita, KS and Radial–Inversion
Regularizing Transformations

Alessandra Celletti

Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca
Scientifica - I–00133 Roma (Italy)

Abstract. We review the Levi–Civita, Kustaanheimo–Stiefel and radial–inversion reg-
ularizing transformations. The Levi–Civita technique is used to deal with planar mo-
tions and its extension to the spatial case is the Kustaanheimo–Stiefel transformation.
An alternative procedure is provided by the so–called radial–inversion transformation.
In all cases, the basic tool is to perform suitable coordinate and time transformations
in the extended phase space. We apply the Levi–Civita, Kustaanheimo–Stiefel and
radial–inversion transformations to the two-body problem and to the restricted three-
body problem. The Hamiltonian formalism is used, which ensures the canonicity of the
transformations.

1 Introduction

Consider two or more massive bodies under the effect of the mutual gravitational
attraction. It can happen that these bodies experience a collision at a given time.
When dealing with the two-body problem, the bodies can collide if they move on
a straight line. Due to the fact that the newtonian force depends on the inverse
of the square of the distance, a collision implies a singularity in the equations
of motion, since during the collision the distance becomes zero. The aim of
regularization theory is to transform singular differential equations into regular
ones. This method is also useful for the numerical solution of close encounter–like
problems, since the regularized equations can be integrated using a larger time
step.

In this chapter we review the Levi–Civita, Kustaanheimo–Stiefel (hereafter,
KS) and radial–inversion regularization theories, which can be used to investigate
two or three-body problems. The Levi–Civita transformation is applied when
the bodies are assumed to move on a plane; the spatial case is covered by the
Kustaanheimo–Stiefel and radial–inversion transformations. All these theories
encompass the case of a collision with one body; in the three-body context, the
simultaneous regularization with both primaries is performed in [1], [6], [7], [8],
[10].

For completeness we shortly review the basic Hamiltonian equations describ-
ing the two and three-body motions. In particular, we shall mainly confine our-
selves to the study of the planar, circular, restricted three-body problem. For the
review of the Levi–Civita and Kustaanheimo–Stiefel regularization, we strictly
follow the theory developed in [7], [9], providing as many details as possible,
while we refer to [5] for more details on the radial–inversion transformation.

D. Benest and C. Froeschlé (Eds.): LNP 590, pp. 25–48, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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We found extremely useful to adopt the Hamiltonian formalism, which allows
to control the conservation of the integrals and to check the canonicity of the
transformations.

2 The two- and three-body problem

In this chapter, we shortly review the basic equations describing the two and
three-body problems, referring to [2], [9] for an exhaustive description. In par-
ticular, we consider a special class of three-body motion, namely the planar,
circular, restricted three-body problem.

2.1 The two-body problem

Let P 1, P 2 be two massive bodies attracting each other by a newtonian force.
According to Kepler’s laws, the motion takes place on a plane. In a fixed reference
frame with relative cartesian coordinates (q1, q2) in the plane of motion, the two-
body problem is described in suitable units of measure by the Hamiltonian

H(p1, p2, q1, q2) =
1
2
(p21 + p22)−

1
(q21 + q22)

1
2

,

where pj = q̇j , j = 1, 2. The corresponding Hamilton’s equations are:

q̇1 =
∂H

∂p1
= p1 ṗ1 = −∂H

∂q1
= − q1

(q21 + q22)
3
2

q̇2 =
∂H

∂p2
= p2 ṗ2 = −∂H

∂q2
= − q2

(q21 + q22)
3
2

.

2.2 The planar, circular, restricted three-body problem

Consider a body S of infinitesimal mass subject to the gravitational attraction
of two bodies P 1, P 2 with masses, respectively, µ1, µ2. Such model is usually
referred to as the restricted problem, since the primary bodies are not affected
by the gravitational attraction of S. We assume that the motion of all bodies
takes place on the same plane and that P 1, P 2 move on circular orbits around
their common center of mass. We refer to this model as the planar, circular,
restricted three-body problem. On the plane of motion, let (q1, q2) be the carte-
sian coordinates of S with respect to an inertial reference frame centered at the
barycenter of P 1 and P 2. We assume that the units of measure are chosen so
that

µ1 + µ2 = 1

and let the coordinates of the other bodies be P 1(X1, Y1), P 2(X2, Y2). The La-
grangian function associated to the motion of S is

L(q̇1, q̇2, q1, q2, t) =
1
2
(q̇21 + q̇22) + V (q1, q2, t) ,
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where

V (q1 , q2, t) ≡ µ1
ρ1

+
µ2
ρ2

ρ1 ≡
√
(q1 −X1)2 + (q2 − Y1)2 , ρ2 ≡

√
(q1 −X2)2 + (q2 − Y2)2 .

Notice that in the above expressions X1, Y1, X2, Y2 are explicit functions of the
time. The corresponding Hamiltonian function is

H(p1, p2, q1, q2, t) =
1
2
(p21 + p22)− V (q1, q2, t) ,

where p1 and p2 are the kinetic moments conjugated to q1 and q2.

Remark: In the spatial case (namely when the motion of the three bodies is
not constrained on a plane) one needs to introduce an extra degree of freedom
setting

H(p1, p2, p3, q1, q2, q3, t) =
1
2
(p21 + p22 + p33)− V (q1, q2, q3, t) ,

where

V (q1, q2, q3, t) =
µ1√

(q1 −X1)2 + (q2 − Y1)2 + (q3 − Z1)2

+
µ2√

(q1 −X2)2 + (q2 − Y2)2 + (q3 − Z2)2

with S ≡ S(q1, q2, q3), P 1 ≡ P 1(X1, Y1, Z1), P 2 ≡ P 2(X2, Y2, Z2).

Coming back to the planar case, we derive the equations of motion of S in a
rotating or synodic reference frame (see Fig. 1) centered at the barycenter of
P 1 and P 2; we assume that the units of measure are chosen so that the relative
angular velocity of P 1 and P 2 is unity.

In such reference system, P 1 and P 2 are at rest and their coordinates are
P 1(µ2, 0), P 2(−µ1, 0). We denote by (Q1, Q2) the coordinates of S in the synodic
frame. In order to derive the transformed Hamiltonian function, it is convenient
to introduce the generating function

W (p1, p2, Q1, Q2, t) = p1Q1 cos t− p1Q2 sin t+ p2Q1 sin t+ p2Q2 cos t ,

with associated characteristic equations

q1 =
∂W

∂p1
= Q1 cos t−Q2 sin t P1 =

∂W

∂Q1
= p1 cos t+ p2 sin t

q2 =
∂W

∂p2
= Q1 sin t+Q2 cos t P2 =

∂W

∂Q2
= −p1 sin t+ p2 cos t ,

whose invertion yields

Q1 = q1 cos t+ q2 sin t p1 = P1 cos t− P2 sin t

Q2 = −q1 sin t+ q2 cos t p2 = P1 sin t+ P2 cos t .
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S(Q  ,Q  )
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1
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2
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P  ( 01 2P  (- 0
12

Fig. 1. Position of P 1, P 2 and S in the synodic frame.

After some computations, one finds

H̃(P1, P2, Q1, Q2, t) = H − ∂W

∂t
=

1
2
(P 2

1 + P 2
2 )

−V (Q1 cos t−Q2 sin t, Q1 sin t+Q2 cos t, t) +Q2P1−Q1P2 .

Since in the fixed frame the bodies P 1 and P 2 describe circles of radius µ2 and
µ1, respectively, around the center of mass, their coordinates are

X1 = µ2 cos t X2 = −µ1 cos t
Y1 = µ2 sin t Y2 = −µ1 sin t .

Therefore, the perturbing function is

V (q1, q2, t)≡ µ1√
(q1−µ2 cos t)2+(q2−µ2 sin t)2

+
µ2√

(q1+µ1 cos t)2+(q2+µ1 sin t)2

and in the new set of variables it reduces to

Ṽ (Q1, Q2) =
µ1√

(Q1 − µ2)2 +Q2
2

+
µ2√

(Q1 + µ1)2 +Q2
2

.

Finally, in the synodic reference frame the Hamiltonian takes the form

H̃(P1, P2, Q1, Q2) =
1
2
(P 2

1 + P 2
2 ) +Q2P1 −Q1P2 − Ṽ (Q1, Q2) . (1)

Hamilton’s equations associated to (1) are

Q̇1 = P1 +Q2 Ṗ1 = P2 + ṼQ1

Q̇2 = P2 −Q1 Ṗ2 = −P1 + ṼQ2 ,
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from which it follows that

Q̈1 − 2Q̇2 = ΩQ1

Q̈2 + 2Q̇1 = ΩQ2 , (2)

where
Ω ≡ 1

2
(Q2

1 +Q2
2) + Ṽ (Q1, Q2) . (3)

Moreover, let Ω ≡ Ω + 1
2µ1µ2. We recall the Jacobi integral as follows: multi-

plying the first equation in (2) by Q̇1 and the second by Q̇2 and adding the two
equations, one obtains:

Q̇2
1 + Q̇2

2 = 2Ω − C ′ = 2Ω − C .

Let the Jacobi constant be defined as

C ≡ 2Ω − (Q̇2
1 + Q̇2

2) .

Remark: Since Q̇1 = P1 + Q2 and Q̇2 = P2 − Q1, one has P1 = Q̇1 − Q2,
P2 = Q̇2 +Q1; therefore, the Hamiltonian in terms of Q1, Q2, Q̇1, Q̇2 becomes

H̃ =
1
2
(Q̇2

1 + Q̇2
2)−

1
2
(Q2

1 +Q2
2)− V (Q1, Q2) =

1
2
(Q̇2

1 + Q̇2
2)−Ω .

Using the Jacobi integral one obtains

H̃ =
µ1µ2 − C

2
.

3 The Levi–Civita regularization

Let us start with the simplest cases of two or three bodies moving on a plane.
In such case, the regularizing transformation is provided by the Levi–Civita
method. We first show the effect of such technique on the two-body system. Once
this problem is solved, its generalization to the three-body system becomes quite
straightforward. The basic steps of the Levi–Civita regularization are provided
by a coordinate change of variables (known as the Levi–Civita transformation),
the introduction of the extended phase space to get rid of the time dependence
and the introduction of a fictitious time.

3.1 The two-body problem

We recall that the Hamiltonian of the two-body problem is given by

H(p1, p2, q1, q2) =
1
2
(p21 + p22)−

1
(q21 + q22)

1
2

.
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In order to regularize the associated equations of motion, let us introduce a
canonical transformation of coordinates with generating function which we as-
sume to be linear in the p–variables:

W (p1, p2, Q1, Q2) = p1f(Q1, Q2) + p2g(Q1, Q2) .

The functions f and g corresponding to the Levi–Civita transformation are given
by

f(Q1, Q2) ≡ Q2
1 −Q2

2 , g(Q1, Q2) ≡ 2Q1Q2 ;

denoting by i =
√−1 the imaginary unit, one has

f + ig ≡ (Q1 + iQ2)2 = Q2
1 −Q2

2 + i · 2Q1Q2 .

The characteristic equations associated to the generating function W are

q1 =
∂W

∂p1
= f(Q1, Q2) = Q2

1 −Q2
2

q2 =
∂W

∂p2
= g(Q1, Q2) = 2Q1Q2

P1 =
∂W

∂Q1
= p1

∂f

∂Q1
+ p2

∂g

∂Q1
= 2p1Q1 + 2p2Q2

P2 =
∂W

∂Q2
= p1

∂f

∂Q2
+ p2

∂g

∂Q2
= −2p1Q2 + 2p2Q1 .

Let the physical plane be described by the coordinates (q1, q2) and the parametric
plane by (Q1, Q2), which are related through q1 + iq2 = f + ig = (Q1 + iQ2)2.
We remark that applying the Levi–Civita transformation the angles at the orgin
are doubled; therefore, a particle which makes a revolution around the center
of mass is transformed to a point of the parametric plane which has made half
revolution.
The last two equations of the above transformation can be inverted as

P = 2A+
0 p with A0 =

(
Q1 −Q2
Q2 Q1

)

(the superscript + denotes matrix transposition). Let D = D(Q1, Q2) ≡ 4 detA0
= 4(Q2

1 +Q2
2) > 0; using the above relations, one obtains

P 2
1 + P 2

2 = D(p21 + p22) .

Therefore, the new Hamiltonian becomes

H̃(P1, P2, Q1, Q2) =
1
2D

(P 2
1 + P 2

2 )−
1

(f(Q1, Q2)2 + g(Q1, Q2)2)
1
2

,

with Hamilton’s equations:

Q̇1 =
P1

D
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Q̇2 =
P2

D

Ṗ1 =
1
2D

(P 2
1 + P 2

2 )
∂D

∂Q1
− 1

2
1

(f2 + g2)
3
2

∂(f2 + g2)
∂Q1

Ṗ2 =
1
2D

(P 2
1 + P 2

2 )
∂D

∂Q2
− 1

2
1

(f2 + g2)
3
2

∂(f2 + g2)
∂Q2

.

Let us rewrite the Hamiltonian function in the extended phase space ([7]), by
adding a new pair of conjugated variables (T, t):

Γ (P1, P2, T,Q1, Q2, t) =
1
2D

(P 2
1 + P 2

2 ) + T − 1
(f(Q1, Q2)2 + g(Q1, Q2)2)

1
2

.

Notice that ṫ = ∂Γ
∂T = 1 and Ṫ = −∂Γ

∂t = 0, so that T = const. = −H̃; in
particular along a solution one obtains T (t) = −H̃.

Remark: The extended phase space is introduced so to obtain a transformation
involving also the time. In general, if H̃ = H̃(P,Q, t) depends explicitly on the
time, one can introduce a time–independent Hamiltonian Γ = Γ (P,Q, T, t) ≡
H̃(P,Q, t) + T , with T being conjugated to t. The Hamiltonian Γ is identically
zero along any solution provided that T (0) = −H̃(P (0), Q(0)).

We next introduce a fictitious time or regularized time s defined as

dt = D(Q1, Q2)ds or
d

dt
=

1
D

d

ds
.

Let us derive the transformed Hamiltonian as follows. From Q̇ = dQ
dt = dQ

ds
ds
dt =

1
D

dQ
ds = ∂Γ

∂P , one has
dQ

ds
=

∂Γ ∗

∂P
,

with Γ ∗ ≡ DΓ . As for P , one has Ṗ = dP
dt = dP

ds
ds
dt =

1
D

dP
ds = − ∂Γ

∂Q , so that

dP

ds
= −∂Γ ∗

∂Q

with Γ ∗ ≡ DΓ , since

∂Γ ∗

∂Q
=

∂D

∂Q
Γ +D

∂Γ

∂Q
= D

∂Γ

∂Q
,

being Γ = 0 along a solution.
Therefore, the new Hamiltonian Γ ∗ becomes

Γ ∗ ≡ DΓ = DT +
1
2
(P 2

1 + P 2
2 )−

D

(f2 + g2)
1
2
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with corresponding Hamilton’s equations (j = 1, 2):

dQj

ds
= Pj

dPj

ds
= − ∂

∂Qj
[DT − D

(f2 + g2)
1
2
]

dt

ds
= D

dT

ds
= 0 . (4)

Notice that the singularity of the problem is associated to the term D

(f2+g2)
1
2
,

which is transformed to

D

(f2 + g2)
1
2
=

D

r
=

4(Q2
1 +Q2

2)
(Q4

1 +Q4
2 − 2Q2

1Q
2
2 + 4Q2

1Q
2
2)

1
2
= 4 .

The desired regularization is achieved, since the singularity has been removed
from the equations of motion with respect to the fictitious time.
In the case of the two-body problem the regularized equations (4) can be easily
solved as follows. Denoting by a prime the derivative with respect to s, we rewrite
the first two equations in (4) as

Q′j = Pj

P ′j = −T ∂D

∂Qj
= −8TQj = 8H̃Qj (j = 1, 2) ,

being T = −H̃. From the above equations one gets the second order differential
equation

Q′′j = 8H̃Qj (j = 1, 2) .

If H̃ < 0 (corresponding to an elliptic orbit), one obtains the equation of an
harmonic oscillator. Let Qj = Qj(s) be its solution; by expressing s in terms of
t through dt = 4(Q2

1 +Q2
2)ds, one gets Qj = Qj(t). Finally, the solution in the

original set of coordinates (q1, q2) is provided by the expressions:

q1 = q1(t) = Q1(t)2 −Q2(t)2 , q2 = q2(t) = 2Q1(t)Q2(t) .

3.2 The planar, circular, restricted three-body problem

We have shown in 2.2 that the Hamiltonian of the planar, circular, restricted
three-body problem is given in a synodic reference frame, by

H(p1, p2, q1, q2) =
1
2
(p21 + p22) + q2p1 − q1p2 − Ṽ (q1, q2) ,

where Ṽ (q1, q2) = µ1
r1

+ µ2
r2

with

r1 = [(q1 − µ2)2 + q22 ]
1
2 , r2 = [(q1 + µ1)2 + q22 ]

1
2
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(notice that we have changed the notation with respect to (1) using small letters
instead of capital letters). Consider a canonical transformation

(p1, p2, q1, q2)→ (P1, P2, Q1, Q2)

defined by a generating function of the form

W (p1, p2, Q1, Q2) = p1f(Q1, Q2) + p2g(Q1, Q2) .

In order to regularize a collisional motion of the small particle S with P 1, one
defines the functions f and g as

f(Q1, Q2) = Q2
1 −Q2

2 + µ2 , g(Q1, Q2) = 2Q1Q2 .

In case of collisions with P 2 replace f by f(Q1, Q2) = Q2
1 − Q2

2 − µ1. The
characteristic equations are:

q1 =
∂W

∂p1
= f(Q1, Q2)

q2 =
∂W

∂p2
= g(Q1, Q2)

P1 =
∂W

∂Q1
= p1

∂f

∂Q1
+ p2

∂g

∂Q1

P2 =
∂W

∂Q2
= p1

∂f

∂Q2
+ p2

∂g

∂Q2
.

Again, the term p21+p22 is transformed into 1
D (P 2

1+P 2
2 ), while the term q2p1−p2q1

becomes

q2p1 − p2q1 =
1
2D

[P1
∂

∂Q2
(f2 + g2)− P2

∂

∂Q1
(f2 + g2)] .

Therefore, the new Hamiltonian becomes

H̃(P1, P2, Q1, Q2)=
1
2D

[P 2
1+P 2

2+P1
∂

∂Q2
(f2+g2)−P2

∂

∂Q1
(f2+g2)]−V̂ (Q1, Q2) ,

where V̂ is Ṽ with f(Q1, Q2) in place of q1 and g(Q1, Q2) in place of q2. The
corresponding equations of motion are

Q̇1 =
1
2D

[2P1 +
∂

∂Q2
(f2 + g2)]

Q̇2 =
1
2D

[2P2 − ∂

∂Q1
(f2 + g2)]

Ṗ1 = − ∂H̃

∂Q1

Ṗ2 = − ∂H̃

∂Q2
.
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The Hamiltonian in the extended phase space is

Γ = T +
1
2D

[P 2
1 + P 2

2 + P1
∂

∂Q2
(f2 + g2)− P2

∂

∂Q1
(f2 + g2)]− V̂ (Q1, Q2) .

As in the two-body problem, we introduce the fictitious time as

dt = D ds ,

which leads to the Hamiltonian

Γ ∗ = DΓ = DT+
1
2
[P 2

1 +P 2
2 +P1

∂

∂Q2
(f2+g2)−P2

∂

∂Q1
(f2+g2)]−DV̂ (Q1, Q2) .

Let Φ(Q1, Q2) ≡ f(Q1, Q2) + ig(Q1, Q2) (with |Φ|2 = f2 + g2); then Hamilton’s
equations with respect to the fictitious time are

Q′1 = P1 +
1
2

∂

∂Q2
|Φ|2

Q′2 = P2 − 1
2

∂

∂Q1
|Φ|2

t′ = D

P ′1 = −T ∂D

∂Q1
− 1

2
[P1

∂2|Φ|2
∂Q1∂Q2

− P2
∂2|Φ|2
∂Q2

1
] +

∂

∂Q1
(DV̂ )

P ′2 = −T ∂D

∂Q2
− 1

2
[P1

∂2|Φ|2
∂Q2

2
− P2

∂2|Φ|2
∂Q2∂Q1

] +
∂

∂Q2
(DV̂ )

T ′ = 0 .

The singularities appear in the term ∂
∂Qj

(DV̂ ), analogously to the term D(f2+

g2)−
1
2 appearing in the two-body problem. From eq. (3), one has 1

2 (f
2+g2)+V̂ =

Ω − 1
2µ1µ2 with q1 = f , q2 = g and Ω = 1

2µ1µ2 +
1
2 (Q

2
1 + Q2

2) + V̂ . Since
|Φ|2 = f2 + g2, one obtains

1
2
|Φ|2 + V̂ = Ω − 1

2
µ1µ2 .

From the relation between H̃ and the Jacobi integral it follows that

H̃ = −T =
µ1µ2 − C

2
,

namely
1
2
|Φ|2 − T + V̂ = Ω − C

2
.

Therefore DV̂ = D(Ω − C
2 ) − 1

2D|Φ|2 + DT , showing that the critical term is
D(Ω − C

2 ); we now prove that such term does not contain singularities. To this
end, let us denote by z = q1 + iq2 and w = Q1 + iQ2 the complex coordinates
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in the physical and parametric plane, respectively. In the physical plane, the
primaries are located at z1 = µ2 and z2 = −µ1; the transformation z = µ2 +
w2 regularizes the singularity at P 1, while the transformation z = −µ1 + w2

regularizes the singularity at P 2. The functions z = µ2+w2 and z = −µ1+w2 are
known as the “Levi–Civita transformations”. Notice that these transformations
are said to be local, since only one of the two singularities is eliminated. Global
transformations (regularizing both collisions simultaneously) were developed in
[1], [8], [10], [6], [7].

Let us consider the function

z ≡ f̃(w) = w2 + µ2 ,

which transforms the point P 1(µ2, 0) of the physical plane into the origin of the
w–plane, while P 2 has coordinates w1,2 = ±i (since w2 = −µ1 − µ2 = −1). The
transformation of U ≡ Ω − C

2 in terms of the new complex variable w requires
the expressions of r1 and r2 in terms of w. Since r1 = |z−µ2| and r2 = |z+µ1|,
one has r1 = |w|2, r2 = |1 + w2|; from

µ1r
2
1 + µ2r

2
2 = µ1(z − µ2)2 + µ2(z + µ1)2 = z2 + µ1µ2 ,

it follows that

U = Ω − C

2
=

1
2
µ1µ2 +

1
2
(q21 + q22) + V − C

2

=
1
2
(µ1r21 + µ2r

2
2) +

µ1
r1

+
µ2
r2
− C

2

=
1
2

[
µ1|w|4 + µ2|1 + w2|2

]
+

µ1
|w|2 +

µ2
|1 + w2| −

C

2
.

Since D = 4(Q2
1 + Q2

2) = 4|w|2, the term DU = D(Ω − C
2 ) does not contain

singularities at P 1.

Let us conclude this paragraph by looking at the behaviour of the velocities
with respect to the fictitious time. The Jacobi integral in the physical space is
|ż|2 = 2U , while in the parametric space it becomes

|w′|2 = 8|w|2U .

Therefore, we have:

|w′|2 = 8µ1 + |w|2
[ 8µ2
|1 + w|2 + 4µ1|w|4 + 4µ2|1 + w2|2 − 4C

]
.

In P 1 one has r1 = 0, namely w = 0, which leads to a finite velocity since
|w′|2 = 8µ1. In P 2 one has r2 = 0, namely w = ±i, which implies an infinite
velocity: |w′|2 =∞.
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4 The Kustaanheimo–Stiefel regularization

A different approach must be used when the three bodies are allowed to move
in the space, rather than in the plane like in the Levi–Civita regularization,
whose technique cannot be extended in a straightforward way. More precisely,
one cannot transform the 3–dimensional physical space into a 3–dimensional
parametric space. As shown in [4] one needs to introduce an extra variable and
the transformation will be carried out in a 4–dimensional space. The other main
ingredients of the Kustaanheimo–Stiefel (hereafter, KS) regularization are simi-
lar to the Levi–Civita method, namely a transformation on coordinates and the
introduction of a fictitious time. Following [7], we show in a separate section that
the KS transformation is canonical.

4.1 The Kustaanheimo–Stiefel transformation

Let us consider the motion in the space of three bodies, S, P 1, P 2, the lat-
ter two having masses, repectively, µ1 and µ2, while S has infinitesimal mass
(”restricted” problem). The primaries move in a plane on circular orbits around
their common center of mass. In the synodic reference frame their coordinates are
P 1(µ2, 0, 0), P 2(−µ1, 0, 0). We assume that the plane of motion of the primaries
rotates with unit angular velocity about the vertical axis. The Hamiltonian func-
tion governing the motion is (see §2.2)

H(p1, p2, p3, q1, q2, q3) =
1
2
(p21 + p22 + p23) + q2p1 − q1p2 − Ṽ (q1, q2, q3) .

Notice that, with abuse of notation, we have written the above Hamiltonian
using small letters instead of capital letters as in §2.2. The equations of motion
of S under the gravitational influence of P 1 and P 2 are

q̈1 − 2q̇2 = Ωq1

q̈2 + 2q̇1 = Ωq2

q̈3 = Ωq3 ,

where Ω = 1
2 (q

2
1 + q22) +

µ1
r1

+ µ2
r2

+ 1
2µ1µ2, with r21 ≡ (q1 − µ2)2 + q22 + q23 ,

r22 ≡ (q1 + µ1)2 + q22 + q23 . We first perform a time transformation and next a
coordinate transformation. As in the Levi–Civita regularization we define the
fictitious time s by

dt = Dds ,

namely d
dt =

1
D

d
ds . We remark that the second derivatives with respect to t and

s are related by

d2

dt2
=

d

dt
(
1
D

d

ds
) =

1
D

d

ds
(
1
D

d

ds
) =

1
D2

d2

ds2
− 1

D3

dD

ds

d

ds
.
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Therefore the equations of motion with respect to the new time s are
1
D2 q

′′
1 −

1
D3D

′q′1 −
2
D

q′2 = Ωq1

1
D2 q

′′
2 −

1
D3D

′q′2 +
2
D

q′1 = Ωq2

1
D2 q

′′
3 −

1
D3D

′q′3 = Ωq3 ,

namely

Dq′′1 −D′q′1 − 2D2q′2 = D3Ωq1

Dq′′2 −D′q′2 + 2D2q′1 = D3Ωq2

Dq′′3 −D′q′3 = D3Ωq3 . (5)

Notice that the singular terms are D3Ωq1 , D
3Ωq2 , D

3Ωq3 , with Ωq1 , Ωq2 , Ωq3 ∼
O( 1

r3
1
).

Remark: Let (q1, q2) be the physical plane and (u1, u2) be the parametric plane.
The Levi–Civita transformation can be written as(

q1
q2

)
=
(

u1 −u2
u2 u1

)(
u1
u2

)
=
(

u21 − u22
2u1u2

)
,

where every element of the matrix A0(u) ≡
(

u1 −u2
u2 u1

)
is linear in u1, u2 and

A0(u) is orthogonal.

The first step in KS–theory is to investigate whether there exists a general-
ization A(u) of the matrix A0(u) in Rn, having the following properties:
i) the elements of A(u) are linear homogeneous functions of the ui;
ii) the matrix is orthogonal, namely

a) the scalar product of different rows vanishes;
b) each row has norm u21 + ...+ u2n.

A result by A. Hurwitz ([3]) states that such matrix can only be produced if
n = 1, 2, 4 or 8, but not n = 3. For this reason, we need to map the 3–dimensional
physical space into a 4–dimensional parametric space, defining

A(u) =




u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1


 .

The extension of the 3–dimensional physical space to a 4–dimensional space is
carried out setting the fourth component equal to zero, i.e. (q1, q2, q3, 0).

We introduce the KS regularization for a collision with the primary P 1 as follows
(the collision with P 2 can be treated in a similar way). Let


q1
q2
q3
0


 = A(u)




u1
u2
u3
u4


+




µ2
0
0
0



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=




u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1






u1
u2
u3
u4


+




µ2
0
0
0


 , (6)

namely

q1 = u21 − u22 − u23 + u24 + µ2

q2 = 2u1u2 − 2u3u4
q3 = 2u1u3 + 2u2u4 .

Notice that the fourth equation is trivially zero.

Remarks:
1) Notice that for u3 = u4 = 0 the KS–transformation reduces to the Levi–Civita
transformation.
2) The norms of each row of the matrix A are equal to the square of the norm
of the vector u: u21 + u22 + u23 + u24.
3) If one wants to regularize P 2 instead of P 1, it suffices to substitute the con-
stant vector (µ2, 0, 0, 0) with (−µ1, 0, 0, 0).
4) The matrix A is orthogonal: A+(u)A(u) = (u, u) · Id. From this relation,
setting Q ≡ (q1 − µ2, q2, q3, 0) it follows that

r21 = (Q,Q) = Q+Q = u+A+(u)A(u)u = (u, u)2 ,

namely r1 = (u, u) = |u|2 = u21 + u22 + u23 + u24.
5) It can be explicitly verified that A(u)′ = A(u′). As a consequence, Q′ =
A(u′)u+A(u)u′ = 2A(u)u′. In fact,

q′1 = 2u1u′1 − 2u2u′2 − 2u3u′3 + 2u4u′4
q′2 = 2u2u′1 + 2u1u′2 − 2u4u′3 − 2u3u′4
q′3 = 2u3u′1 + 2u1u′3 + 2u4u′2 + 2u2u′4 , (7)

namely




q′1
q′2
q′3
0


 = 2A(u)u′ = 2




u1u
′
1 − u2u

′
2 − u3u

′
3 + u4u

′
4

u2u
′
1 + u1u

′
2 − u4u

′
3 − u3u

′
4

u3u
′
1 + u1u

′
3 + u4u

′
2 + u2u

′
4

u4u
′
1 − u3u

′
2 + u2u

′
3 − u1u

′
4


 ,

where the last equation is named bilinear relation:

u4u
′
1 − u3u

′
2 + u2u

′
3 − u1u

′
4 = 0 .

6) Concerning the second derivative, one has

Q′′ = 2A(u)u′′ + 2A(u′)u′ ,
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namely

q′′1 = 2(u1u′′1 − u2u
′′
2 − u3u

′′
3 + u4u

′′
4) + 2(u′21 − u′22 − u′33 + u′34 )

q′′2 = 2(u2u′′1 + u1u
′′
2 − u4u

′′
3 − u3u

′′
4) + 4(u′1u

′
2 − u′3u

′
4)

q′′3 = 2(u3u′′1 + u1u
′′
3 + u′′2u4 + u2u

′′
4) + 4(u′1u

′
3 + u′2u

′
4)

0 = 2(u4u′′1 − u3u
′′
2 + u2u

′′
3 − u1u

′′
4) (8)

(notice that the last equation follows from the bilinear relation).

In order to obtain the KS regularization we remark that the scale factor D is
given by

D ≡ 4r1 = 4(u, u) = 4(u21 + u22 + u23 + u24)

and that D′ = 4r′1 = 8(u1u′1 + u2u
′
2 + u3u

′
3 + u4u

′
4). Therefore, the equations of

motion are given by (5) where q1, q2, q3, q′1, q
′
2, q
′
3, q
′′
1 , q

′′
2 , q

′′
3 are expressed in

terms of u, u′, u′′ through (6), (7), (8). The singular part of the equations (5) is
given by D3Ωq1 (or D3Ωq2 , D

3Ωq3). Since Ωq1 ∝ 1
r3
1
and D ∝ r1, it follows that

D3Ωq1 = O(1) and the regularization of the singularity in P 1 is thus obtained.
This concludes the KS regularization; we devote next section to the proof of its
canonical character ([7]).

4.2 Canonicity of the KS-transformation

We have seen that in the planar case the KS–transformation reduces to the
Levi–Civita transformation:(

q1
q2

)
=
(

u1 −u2
u2 u1

)(
u1
u2

)
=
(

u21 − u22
2u1u2

)
≡ A0(u)u ,

with A0(u) =
(

u1 −u2
u2 u1

)
. If U = (U1, U2) is conjugated to u = (u1, u2), one

obtains

p =
(

p1
p2

)
=

1
2
(A+

0 )
−1U =

1
2(u21 + u22)

(
u1 −u2
u2 u1

)(
U1
U2

)

=
1

2(u21 + u22)
A0(u)

(
U1
U2

)
. (9)

In the spatial case, we define a 4× 3 matrix Λ(u) as

Λ(u) ≡

u1 −u2 −u3 u4

u2 u1 −u4 −u3
u3 u4 u1 u2


 ,

which is obtained from A(u) suppressing the last row. Let


 q1

q2
q3


 = Λ(u)




u1
u2
u3
u4


+


µ2

0
0


 . (10)
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Eq. (9) suggests to define


 p1

p2
p3


 =

1
(u21 + u22 + u23 + u24)

Λ(u)




U1
U2
U3
U4


 . (11)

We shall use the notation u0 = t, U0 = T , where T is the variable conjugated
to t. The aim of this section is to verify that (10) and (11) define a canonical
transformation (see [7] for further details). Recall that

r1 =
√
(x− µ2)2 + y2 + z2 = u21 + u22 + u23 + u24 = |u|2 .

Defining the scalar product

l(U, u) ≡ (U, u∗)

with u∗ = (u4,−u3, u2,−u1) (last row of A(u)), one obtains




p1
p2
p3
ρ


 =

1
2r1

A(u)




U1
U2
U3
U4


 ,

where the auxiliary variable ρ is defined as

ρ =
1
2r1

(U1u4 − U2u3 + U3u2 − U4u1) =
1
2r1

l(U, u) .

Since 


p1
p2
p3
ρ


 (p1, p2, p3, ρ) =

1
4r21

r1|U |2 = 1
4r1
|U |2

(recall that A(u)A(u)+ = r1), one obtains (p21+ p22+ p23+ρ2)r1 = 1
4 |U |2, namely

(p21 + p22 + p23)r1 =
1
4
|U |2 − 1

4r1
l2(U, u) . (12)

We rewrite the Hamiltonian describing the spatial case in a fixed reference frame,
evidentiating the term 1

r1
due to the interaction with P 1; in the extended phase

space, one has

H =
1
2
(p21 + p22 + p23) + T − 1

r1
− V (q1, q2, q3, t) ;

introducing the fictitious time defined by dt = r1ds one obtains

H̃ =
1
2
(p21 + p22 + p23)r1 + Tr1 − 1− r1V (x, y, z, t) .
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Using r1 = |u|2 and (12), one gets the Hamiltonian

H =
1
8
|U |2 + T |u|2 − 1 + |u|2V (u, u0)− 1

8|u|2 l
2(U, u) . (13)

Lemma 1: The bilinear quantity

l(U, u) = U1u4 − U2u3 + U3u2 − U4u1

is a first integral of the new canonical equations

duk
ds

=
∂H

∂Uk
,

dUk

ds
= − ∂H

∂uk
(k = 0, 1, 2, 3, 4) ,

namely l is constant along the solutions of the equations of motion.
Proof: One has:

dl

ds
=

4∑
j=1

∂l

∂Uj

dUj

ds
+

∂l

∂uj

duj
ds

= (u∗,
dU

ds
)− (U∗,

du

ds
)

and denoting by U0 ≡ T , the new canonical equations are

du

ds
=

∂H

∂U
=

1
4
U − 1

4|u|2u
∗l(U, u)

dU

ds
= −∂H

∂u
= −2U0u− ∂

∂u
(|u|2V )− 1

4|u|4ul
2(U, u)− 1

4|u|2U
∗l(U, u) .

Observing that (u∗, u) = (U∗, U) = 0, one has

dl

ds
= −2U0(u∗, u)− (u∗,

∂

∂u
(|u|2V ))− 1

4|u|4 (u
∗, u)l2(U, u)

− 1
4|u|4 (u

∗, U∗)l(U, u)− 1
4
(U∗, U) +

1
4|u|2 (U

∗, u∗)l(U, u)

= −(u∗, ∂

∂u
[(u, u)V ]) = −2(u∗, u)V − |u|2(u∗, ∂V

∂u
) = −|u|2(u∗, ∂V

∂u
) .

From direct computations it follows that ∂V
∂u = 2A+(u) ∂V∂q1

; moreover, one has
that

(u∗,
|u|2
2

A+(u)(− ∂V

∂q1
)) = 0 .

Indeed, if y ≡ −∂V
∂x and v ≡ 2|u|2A+(u)y, then (u∗, v) = (v, u∗) = 0. In fact,

(v, u∗) = l(v, u) = u4v1−u3v2+u2v3−u1v4 is equal to the fourth component of

A(u)v = 2A(u)A+(u)y |u|2 = 2(u, u)y |u|2 ,

which is zero since it coincides with the fourth component of y ≡ − ∂V
∂q1

.
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Finally we have (u∗, ∂V∂u ) = 0, which implies dl
ds = 0 along the equations of

motions.

Lemma 2: Assume that the initial values u(0), U(0) of u(s), U(s) satisfy at
s = 0 the bilinear relation

l(U(0), u(0)) = U1(0)u4(0)− U2(0)u3(0) + U3(0)u2(0)− U4(0)u1(0) = 0 .

Then one has:
a) the value of the first integral l is zero: l(U, u) = U1u4−U2u3+U3u2−U4u1 = 0;
b) the Hamiltonian (13) is equivalent to the reduced Hamiltonian

Ĥ =
1
8
|U |2 + U0|u|2 − 1 + |u|2V (u, u0) .

Proof:
a) It is a corollary of Lemma 1.
b) The canonical equations related to the Hamiltonian H and Ĥ possess the
same solutions as a consequence of a), since the term l2(U, u) can be factored
out in H − Ĥ and differentiation leaves a factor l, which is zero along the given
solutions.

At this stage we need the fact that to each set of initial conditions in the
physical space q1(0), q2(0), q3(0), p1(0), p2(0), p3(0) we can associate a set of
initial conditions in the parametric space u(0), u0(0), U(0), U0(0) (obtained
through (10), (11)), such that

(i) u0(0) = 0, U0(0) = −H(q1(0), q2(0), q3(0), p1(0), p2(0), p3(0), 0);

(ii) l(U(0), u(0)) = U1(0)u4(0)− U2(0)u3(0) + U3(0)u2(0)− U4(0)u1(0) = 0.

Notice that to obtain (ii) one can proceed as at the end of Lemma 1, setting
v = A+(u)y with y = q′1(0) and defining U(0) ≡ 1

2|u(0)|2 A
+(u(0))q′1(0).

Main Theorem: Suppose that u(0), u0(0), U(0), U0(0) satisfy (i) and (ii); then
the solutions of

duk
ds

=
∂Ĥ

∂Uk
,

dUk

ds
= − ∂Ĥ

∂uk
(k = 0, 1, 2, 3, 4)

give by (10) and (11) the solution of Hamilton’s equations relative to H with
the corresponding initial data:

dQ

dt
=

∂H

∂P
,

dP

dt
= −∂H

∂Q
(Q = (q1, q2, q3) , P = (p1, p2, p3)) .

Proof: To prove the canonicity, we use the criterion based on Poisson brackets,
namely we need to check that

(a) {qk, ql} =
4∑

j=0

(
∂qk
∂Uj

∂ql
∂uj
− ∂qk

∂uj

∂ql
∂Uj

) = 0
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(b) {pk, ql} =
4∑

j=0

(
∂pk
∂Uj

∂ql
∂uj
− ∂pk

∂uj

∂ql
∂Uj

) = δkl

(c) {pk, pl} =
4∑

j=0

(
∂pk
∂Uj

∂pl
∂uj
− ∂pk

∂uj

∂pl
∂Uj

) = 0 ,

for k = 0, 1, 2, 3, l = 0, 1, 2, 3 and for every s. The case k = 0 or l = 0 is trivial;
therefore the sum can be restricted to j = 1, 2, 3, 4. Since the variables U do not
appear in the KS–transformation, one has ∂qk

∂Uj
= 0, namely {qk, ql} = 0, which

implies (a), while (b) becomes

{pk, ql} =
4∑

j=1

∂pk
∂Uj

∂ql
∂uj

= δkl (k, l = 1, 2, 3) . (14)

Using matrix notation one has

(
∂ql
∂uj

) = 2Λ(u) , (
∂pk
∂Uj

) =
1

2|u|2Λ(u) ,

(
∂pk
∂uj

) = − 1
|u|4Λ(u)




U1
U2
U3
U4


 (u1, u2, u3, u4) +

1
2|u|2Λ(U) ,

for l, k = 1, 2, 3, j = 1, 2, 3, 4. Therefore, (14) is equivalent to

{pk, ql} = 1
|u|2 [Λ(u)Λ

+(u)]kl =
1
|u|2 (u, u) (Id.)kl = δkl ,

due to the orthogonality of Λ. It remains to prove (c) whose proof makes use
of the bilinear relation, which is valid along the solution due to a) of Lemma 2.
Condition (c) can be checked by lenghty computations. Alternatively, due to the
symmetry of the two terms in (c), it is convenient to prove (c) by showing that
the matrix A−B is symmetric, where

A−B = (
4∑

j=1

∂pk
∂uj

∂pl
∂Uj

) 2|u|6

A ≡ 1
2
|u|2Λ(U)Λ+(U)

B ≡ Λ(U)




U1
U2
U3
U4


 (u1, u2, u3, u4)Λ+(U)

= Λ(U)




U1
U2
U3
U4


[Λ(U)




u1
u2
u3
u4


]+ .

We refer to [7] for the explicit proof of the symmetry of A−B.
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5 The radial–inversion transformation

In this section we review a regularization technique which is alternative to the
Levi–Civita and KS transformations. This method, to which we refer as the
radial–inversion transformation, is developed in all details in [5].

Consider three bodies P1, P2, P3 with masses m1, m2, m3; let (q1, ..., q9)
be their spatial coordinates in a fixed reference frame and let (p1, ..., p9) be the
corresponding momenta. We denote by (x1, ..., x6) the coordinates of P1 and P2
relative to P3, i.e.

xk = qk − qk+6 , xk+3 = qk+3 − qk+6 ,

xk+6 = qk+6 , k = 1, 2, 3

(notice that x7, x8, x9 still denote the coordinates of P3). The corresponding
momenta become

yk = pk , yk+3 = pk+3 , yk+6 = pk + pk+3 + pk+6 , k = 1, 2, 3 .

Therefore, the equations of motion are given by

ẋk = Hyk , ẏk = −Hxk , k = 1, ..., 9 ,

where H = T − U with

T =
1
2

3∑
k=1

( y2k
m1

+
y2k+3

m2
+

(yk+6 − yk − yk+3)2

m3

)

and

U =
m1m3

(x21 + x22 + x23)1/2
+

m2m3

(x24 + x25 + x26)1/2

+
m1m2[

(x1 − x4)2 + (x2 − x5)2 + (x3 − x6)2
]1/2 .

We remark that the Hamiltonian function does not depend on x7, x8, x9, so that
y7, y8, y9 are constants of motion corresponding to the integrals of the center of
mass.

Without loss of generality, we can assume that the origin of the reference
frame coincides with the center of mass, so that

xk+6 = −m1xk +m2xk+3

M
, k = 1, 2, 3 ,

where M ≡ m1 + m2 + m3 is the total mass. Consequently, the kinetic energy
becomes

T =
1
2
( 1
m1

+
1
m3

) 3∑
k=1

y2k +
1
2
( 1
m2

+
1
m3

) 3∑
k=1

y2k+3 +
1
m3

3∑
k=1

ykyk+3 .
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Let us consider the case of a collision between P1 and P3, assuming that such
event takes place at time t = tc. To simplify the notation, we define

x2 ≡ x21 + x22 + x23 , y2 ≡ y21 + y22 + y23 ;

a collision occurs whenever x→ 0 as t→ tc.

We introduce a fictitious time s defined through the relation

dt = x ds ;

the equations of motion with respect to the new time are

x′k = xHyk , y′k = −xHxk , k = 1, ..., 6 ,

where the prime denotes derivative with respect to s. Since the above equations
are no longer in Hamiltonian form, we take advantage from the conservation of
the energy, as follows. Assume that H = h for a fixed value of the energy h and
replace the Hamiltonian function by

H̃ = x(H − h) = xT − xU − xh ; (15)

therefore the dynamics of the solutions for which H = h (i.e., H̃ = 0) is governed
by the equations

x′k = H̃yk , y′k = −H̃xk , k = 1, ..., 6 .

Let us start with the study of the two-body problem obtained ignoring the
existence of P2. Then, the kinetic energy and the force function reduce to

T =
1
2
( 1
m1

+
1
m3

)
y2

U =
m1m3

x
,

so that, neglecting constant terms, the Hamiltonian can be written as

H̃ =
1
2
( 1
m1

+
1
m3

)
xy2 − hx .

Restricting to zero energy (i.e., taking h = 0) and normalizing the masses so
that 1

2

( 1
m1

+ 1
m3

)
= 1, one obtains

H̃ = xy2 = (x21 + x22 + x23)
1
2 (y21 + y22 + y23)

with associated Hamilton’s equations

x′k = H̃yk , y′k = −H̃xk , k = 1, 2, 3 .
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From Hamilton–Jacoby theory, since H̃ does not depend on s, the solution can
be obtained looking for a function w of the form

w(xk, ξk, s) = v(xk, ξk)− λ(ξk)s ,

such that
H̃(xk, vxk) = λ(ξk) . (16)

The equations associated to the generating function are

yk = vxk
ηk = λξks− vξk , k = 1, 2, 3 . (17)

Instead of (17) we consider the following canonical transformation independent
on s:

yk = vxk
ηk = −vξk , k = 1, 2, 3 . (18)

Let us now start from the discussion of the planar case for which (16) becomes

(x21 + x22)
1
2 (v2x1

+ v2x2
) = λ(ξk) .

To this end, let z = x1 + ix2; we look for v as the imaginary part of an analytic
function f(z) = u+ iv. By Cauchy–Riemann equations, one finds

ux1 = vx2 , v2x1
+ v2x2

= u2x1
+ v2x1

= |fz|2 ,

from which it follows that |zf2z | = λ(ξk) is constant in z. Let ζ = ξ1 + iξ2 be
a complex constant and zf2z = ζ. Then, one finds that fz(z) = 2(ζ/z)

1
2 , which

gives by integration: f(z) = 2
√

ζz. From this solution, it follows that

v2 = 2|ζz| − ζz − ζz = 2(ξx−
2∑

k=1

ξkxk) .

The generalization to the spatial case is immediately given by the following
formulae:

v2 = 2(ξx−
3∑

k=1

ξkxk)

ξ =
√

ξ21 + ξ22 + ξ23

x =
√

x21 + x22 + x23 ,

with associated Hamiltonian function

H̃ = xy2 = (x21 + x22 + x23)
1
2 (y21 + y22 + y23) .
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From the above relations one easily finds that

xvvxk = xkξ − ξkx

ξvvξk = ξkx− xkξ ,

from which it follows that xvxk = −ξvξk . Therefore, by (18) one obtains

xyk = ξηk , k = 1, 2, 3 . (19)

Moreover, from (18) and

x
3∑

k=1

v2xk = ξ , ξ

3∑
k=1

v2ξk = x ,

one obtains
xy2 = ξ , ξη2 = x .

Finally, the radial–inversion transformation is obtained through (19) as

ηk =
yk
y2

yk =
ηk
η2

, k = 1, 2, 3 .

Moreover, one finds that (see [5])

xk = ξkη
2 − 2ηk

3∑
l=1

ξlηl

ξk = xky
2 − 2yk

3∑
l=1

xlyl , k = 1, 2, 3 .

Let us now come back to the 3–body problem for which we rewrite the radial–
inversion transformation as

ηk =
yk
y2

, ξk = xky
2 − 2yk

3∑
l=1

xlyl , k = 1, 2, 3

ηk = yk , ξk = xk , k = 4, 5, 6 .

Hamilton’s equations in the new variables are

ξ′k = Ĥηk

η′k = −Ĥξk , k = 1, ..., 6 ,

where Ĥ denotes the Hamiltonian H̃ expressed in the new set of variables
(ξk, ηk). Recalling (15) (for a nonzero value of h) and using the following re-
lations
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xy2 = ξ

x = ξη2

xk = ξkη
2 − 2ηk

3∑
l=1

ξlηl

yk =
ηk
η2

k = 1, 2, 3 ,

one easily finds that

xT =
1
2
( 1
m1

+
1
m3

)
ξ +

1
2
( 1
m2

+
1
m3

)
ξη2

3∑
k=1

η2k+3 +
1
m3

ξ

3∑
k=1

ηkηk+3

xU = m1m3 +m2ξη
2 (m3

r23
+

m2

r12

)
(20)

xh = ξη2h ,

where

r223 =
3∑

k=1

ξ2k+3 , r212 =
3∑

k=1

(xk − ξk+3)2 .

At collision, i.e. when P1 tends to P3, the distances r12 and r23 have positive
limits and therefore the equations of motion in the (ξ, η) variables are regular.
This concludes the regularizing transformation by radial–inversion.
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The Birkhoff and B3 Regularizing
Transformations

Maria Gabriella Della Penna

Observatoire de Nice, B.P.4229, F-06304 Nice Cedex 4 (France)

Abstract. The Birkhoff transformation for the restricted circular planar three body
problem is introduced using a Hamiltonian formalism. A generalization of the Birkhoff
transformation (hereafter the B3 transformation) is derived in order to regularize the
circular spatial three body problem by means of a geometrical approach. These trans-
formations have the important property to provide a simoultaneous regularization of
two singularities.
Some results about numerical integrations before and after the regularization are pre-
sented.

1 Introduction

In this section we focus our attention on the Birkhoff regularizing method applied
to the restricted circular planar three body problem. We next introduce the
B3 regularization, namely a generalization of the Birkhoff regularization for 3–
dimensional motions.

The Levi–Civita and KS transformations were introduced in a previous chap-
ter in order to regularize a single collision in the two body problem, or in the
restricted problem. However when dealing with the restricted circular problem
(i.e. the motion of a satellite with negligible mass in the gravitational field gener-
ated by the primaries), Newton’s equations are characterized by two singularities
at the attracting centers and sometimes a simultaneous regularization of both
singularities is needed. This can be performed by using the Birkhoff and B3
transformations.

The first section of this paper is devoted to the Birkhoff transformation for the
restricted circular planar three body problem; in the second part, we introduce
the B3 regularization for the spatial problem ([4], [7], [6], [8]). Finally we show
how the Birkhoff regularizing transformation works, performing numerical inte-
grations for some initial conditions of the pre-regularized and post-regularized
equations of motion of the restricted circular planar three body problem ([2]).

2 The Birkhoff regularization

Let P̄1, P̄2 be two massive bodies which interact each other in a Newtonian
gravity field, and P̄3 a third body of negligible mass in the force field of the pri-
maries. We suppose that P̄1 and P̄2 evolve in circular orbits around their center

D. Benest and C. Froeschlé (Eds.): LNP 590, pp. 49–62, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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of mass. A synodic coordinate system (y1, y2) rotating with unit angular veloc-
ity is introduced, so that P̄1 and P̄2 are fixed on the y1–axis, the origin being
their center of gravity. We restrict the motion to planar orbits on the y–plane,
so that we are dealing with a restricted–circular–planar three body problem. By
a convenient choice of the units of measure, we normalize to one: the total mass
of P̄1 and P̄2, their distance, and the gravitational costant. Denoting the mass
of P̄2 by µ, its position is at (1 − µ, 0) in the y–plane, while P̄1 is located at
(−µ, 0). Finally we denote by r1, r2 the distances of the moving particle P̄3 from
P̄1 and P̄2 respectively.
Under these hypotheses, the Hamiltonian function which describes the motion
of P̄3 is given by:

H(y1, y2, p̃1, p̃2) =
1
2
(p̃12 + p̃22) + y2p̃1 − y1p̃2 − 1− µ

r1
− µ

r2
, (1)

where y1, y2 are the coordinates of P̄3, p̃1, p̃2 their impulses, and:

r1 =
√
(y1 + µ)2 + y22, r2 =

√
(y1 − 1 + µ)2 + y22.

The Hamiltonian (1) has two singularities with respect to P̄1 and P̄2, and a
simoultaneous regularization at both attracting centers is needed. This is per-
formed by the so–called Birkhoff’s transformation, which maps the (y1, y2) phys-
ical plane into the parametric (Q1, Q2)-plane so that the Hamiltonian (1) has
no longer singularities at the attracting centers.
Instead of using the mass center of the primaries as the origin of the coordi-
nate system, we select the midpoint between the primaries as the origin. Let

q1+ iq2 = y1+ iy2− 1
2
+µ be the transformation which locates the primaries at

(q1, q2) = (±1
2
, 0). We introduce a generating function:

W (q1, q2, p̃1, p̃2) = (q1 +
1
2
− µ)p̃1 + q2p̃2,

which depends from the old impulses and the new coordinates. Therefore we
have:

y1 =
∂W

∂p̃1
= q1 +

1
2
− µ, y2 = ∂W

∂p̃2
= q2

p1 =
∂W

∂q1
= p̃1, p2 =

∂W

∂q2
= p̃2.

The new Hamiltonian becomes:

H1(q1, q2, p1, p2) =
1
2
(p12 + p22) + q2p1 − (q1 +

1
2
− µ)p2 − 1− µ

r1
− µ

r2
, (2)

where:

r1 =

√
(q1 +

1
2
)2 + q22, r2 =

√
(q1 − 1

2
)2 + q22.
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The singularities are now located at P̄1 = (−1
2
, 0), P̄2 = (

1
2
, 0).

The equations of motion in complex form become:

q̈ + 2iq̇ = ∇qU(q), (3)

where ∇qU(q) denotes the gradient of U(q) with respect to q, U(q) = Ω(q)− C
2

for a suitable constant C, and:

Ω(q) =
1
2
[(1− µ)r12 + µr22] + 1− µ

r1
+
µ

r2
=

1
2
[(1− µ)r12 + µr22] +Ωc(q),

where Ωc(q) is caleld the critical part of Ω(q),

Ωc(q) =
1− µ
r1

+
µ

r2
.

The Jacobi integral is given by the expression:

|q̇|2 = 2Ω(q)− C = 2U(q).

Using complex notation, let w = Q1 + iQ1 (i is the imaginary part); the regu-
larizing function is defined by:

q = h(w) = αw +
β

w
,

α, β are constants to be determined.
Beside the above transformation of coordinates, we define a time transformation

dt

dτ
= g(w) ≡ |k(w)|2 = k(w)k(w),

were k(w) is a suitable complex function that will be defined later on, the bar
denotes the conjugate, and t is the old time, wheareas τ is the new time.
We derive the equation of motion (3) in terms of the new variables, in order to
point out more easily what is the singular part of the equations, and consequently
we determine the constants α, β. One finds:

q̇ =
dq

dt
=
dh

dw

dw

dτ

dτ

dt
= h′w′τ̇ ,

while:

q̈ = h′w′τ̈ + (h′′w′2 + h′w′′)τ̇2.

The gradient operator becomes:

h′∇qU = ∇wU.



52 Maria Gabriella Della Penna

Therefore, the equations of motion (3) take the form:

w′′ + 2i
w′

τ̇
+ w′

τ̈

τ̇2
+ w′2

h′′

h′
= ∇wU 1

|h′|2τ̇2 . (4)

We know also that: τ̇ =
1
g
=

1
kk

, so that τ̈ = − ġ
g2

, namely:
τ̈

τ̇2
= −ġ. Since:

−ġ = −(k dk
dw

dw

dτ
+ k

dk

dw

dw

dτ
)τ̇ = −(k

′w′

k
+
k′w′

k
),

equation (4) becomes:

w′′ + 2ikkw′ − |w
′|2
k

dk

dw
+ w′2(

h′′

h′
− k

′

k
) =
|k|4
|h′|2∇wU. (5)

By the relation of the energy integral it follows that |w′|2 = |k|
4

|h′|2 2U .
In fact, the Jacobi integral in terms of the old variables is:

|q̇|2 = 2Ω(q)− C = 2U(q); (6)

from (6) and

|q̇| = |h′||w′| 1
|k|2 ,

we get the relation of the energy integral in terms of the w–variables. Then,
introducing

h′′

h′
− k

′

k
=

d

dw
(ln
h′

k
),

in (5) we get the equation:

w′′ + 2ikkw′ + (w′)2
d

dw
(ln
h′

k
) =
|k|4
|h′|2 (2U

dlnk

dw
+∇wU),

which may be written as:

w′′ + 2ikkw′ = ∇w |k|
4

|h′|2U − 2iw′Im(w′
d

dw
ln
h′

k
),

where the symbol Im stands for imaginary part. Finally, with the choice k = h′,
the equation of motion assumes the form:

w′′ + 2i|h′|2w′ = ∇w|h′|2U. (7)

At this point, we can determine the constants α and β by means of the following
two conditions: it is required that the function h should eliminate both singu-
larities, and that the points P̄1, P̄2 are fixed points of the transformation.
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Concerning the first requirement we must consider the product of the critical
part of Ω(w), say Ωc(w), namely the part responsible for the singularities, with
|h′(w)|2, where:

Ωc(w) =
1− µ
r1

+
µ

r2
=

1− µ
|αw +

β

w
− 1

2
|
+

µ

|αw +
β

w
+

1
2
|
,

|h′(w)|2 = |αw
2 − β|2
|w|4 ;

this product can be written as:

Ωc(w) · |h′(w)|2 = 1
|w|3 (

(1− µ)|αw2 − β|2
|αw2 + β +

w

2
|

+
µ|αw2 − β|2
|αw2 + β − w

2
|
)

The singularity located at q =
1
2
corresponds to the values for w:

w1,2 =
1
4α

(1± (1− 16αβ)
1
2 )

which are the solutions of the equation:

1
2
= αw +

β

w

The roots w1,2 are the same roots of the denominator |αw2 + β − w
2
|, and in

order to eliminate the singularity, the roots of the corresponding numerator
|αw2 − β| must coincide with w1,2, namely:

1
4α

(1± (1− 16αβ)
1
2 ) = ±(β

α
)

1
2 . (8)

Solving the equation (8) one gets:

αβ(16αβ − 1) = 0.

Since both α and β must be different form zero, one obtains 16αβ = 1. This

result shows that w1 = w2 =
1
4α

, i.e. the image of P̄2 is uniquely determinated

by the transformation. If we look for a transformation which leaves P̄2 at (
1
2
, 0),

we must impose that
1
4α

=
1
2
, namely α =

1
2
and β =

1
8
. The first term in the

critical part Ωc(w) has a singularity at P̄1 and its elimination is identical to the
previous procedure; one finds the same values for α, β as in the regularization
of P̄2.
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The other singularity is due to the term
1
|w|3 , but the singularity at w = 0

corresponds to q →∞, which does not have physical meaning in our problem.
Finally, the Birkhoff transformation is given by

q =
1
2
(w +

1
4w

), w = Q1 + iQ2,

namely:

q1 =
1
2
(Q1 +

Q1

4(Q2
1 +Q

2
2)
)

q2 =
1
2
(Q2 − Q2

4(Q2
1 +Q

2
2)
).

We next apply the Birkhoff transformation to the Hamiltonian (2) introducing
the generating function

W (p1, p2, Q1, Q2) = p1f(Q1, Q2) + p2g(Q1, Q2),

where:

f(Q1, Q2) =
1
2
(Q1 +

Q1

4(Q2
1 +Q

2
2)
)

g(Q1, Q2) =
1
2
(Q2 − Q2

4(Q2
1 +Q

2
2)
).

The equations which relate the new and old variables are

q1 =
∂W

∂p1
= f(Q1, Q2), q2 =

∂W

∂p2
= g(Q1, Q2)

P1 =
∂W

∂Q1
= p1fQ1 + p2gQ1 , P2 =

∂W

∂Q1
= p1fQ2 + p2gQ2 ,

with:

fQi =
∂f

∂Qi
, gQi =

∂g

∂Qi
, i = 1, 2.

Moreover, the functions f and g are conjugate harmonic functions and therefore
satisfy the Cauchy–Riemann relations:

fQ1 = gQ2 , fQ2 = −gQ1 .

Let P = (P1, P2) and p = (p1, p2) be the vectors relative to the new and old
impulses respectively. The change of the coordinates is given by: P = Ap, where

A =
(
fQ1 gQ1

fQ2 gQ2

)
.
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Let:

D ≡ det(A) = (fQ1)
2 + (gQ1)

2 = (
1
2
+
−Q1

2 +Q2
2

8(Q1
2 +Q2

2)2
)2 + (

Q1Q2

4(Q1
2 +Q2

2)2
)2.

Since A−1 =
A+

D
(A+ is the transposed of the matrix A), we get the relation:

p = A+P/D, and therefore: p2 =
P 2

D
, since A is an orthogonal matrix.

The quantities r1, r2 become

r1 =
ρ1

2

2ρ
, r2 =

ρ2
2

2ρ
, (9)

where

ρ1 = ((Q1 +
1
2
)2 +Q2

2)
1
2 , ρ2 = ((Q1 − 1

2
)2 +Q2

2)
1
2 ,

ρ = (Q1
2 +Q2

2)
1
2 ,

while D =
ρ1

2ρ2
2

4ρ4
.

In fact, r1 = |q + 1
2
| = |w

2
+

1
8w

+
1
2
| =
|w2 + w +

1
4
|

2|w| =
|w +

1
2
|2

2|w| =
ρ1

2

2ρ
;

r2 = |q − 1
2
| = |w

2
+

1
8w
− 1

2
| =
|w2 − w +

1
4
|

2|w| =
|w − 1

2
|2

2|w| =
ρ2

2

2ρ
;

The term: q2p1 − q1p2 − ( 12 − µ)p2 is transformed into:

1
2D

[P1
∂

∂Q2
(f2 + g2)− P2 ∂

∂Q1
(f2 + g2)− (1− 2µ)(P1gQ1 + P2fQ1)]. (10)

To prove (10), we first show that:

1
2D

[P1
∂

∂Q2
(f2 + g2)− P2 ∂

∂Q1
(f2 + g2)] = q2p1 − p2q1.

In fact, the l.h.s. is equal to:

1
D
[P1(ffQ2 + ggQ2)− P2(ffQ1 + ggQ1)]

=
1
D
[(p1fQ1 + p2gQ1)(ffQ2 + ggQ2)− (p1fQ2 + p2gQ2)(ffQ1 + ggQ1)]

=
1

fQ1
2 + gQ1

2
[p1g(fQ1

2 + gQ1
2)− p2f(fQ1

2 + gQ1
2)]

= q2p1 − p2q1.
By the relation: p = A+P/D, we get:

p1 =
1
D
[fQ1P1 − gQ1P2], p2 =

1
D
[gQ1P1 + fQ1P2]
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Finally,

−(1
2
− µ)p2 = 1

2D
[−(1− 2µ)(gQ1P1 + fQ1P2)],

and the relation (10) is proved.
Finally, the Hamiltonian in terms of the regularized variables is:

H2(Q1, Q2, P1, P2) =
1
2D

[P12 + P22 + P1
∂

∂Q2
(f2 + g2)

−P2 ∂

∂Q1
(f2 + g2)− (1− 2µ)(P1gQ1 + P2fQ1)]− (1− µ) 2ρ

ρ12
− µ 2ρ

ρ22
.

Let Γ = T+H2(Q1, Q2, P1, P2) be the Hamiltonian in the extended phase space,
where T is the variable conjugated to the time t. Now the time is a generalized
coordinate, and we can perform also time transformations to the Hamiltonian
Γ .
Introducing the fictitious time s by the relation dt = Dds, the new Hamiltonian
becomes:

Γ ∗ = DΓ = DT +
1
2
[P12 + P22 + P1

∂

∂Q2
(f2 + g2)

−P2 ∂

∂Q1
(f2 + g2)− (1− 2µ)(P1gQ1 + P2fQ1)]−D[(1− µ) 2ρ

ρ12
+ µ

2ρ
ρ22

].

The associated Hamilton’s equations with respect to the fictitious time are:

Q1
′ = P1 +

1
2
[
∂

∂Q2
(f2 + g2)− (1− 2µ)gQ1 ]

Q2
′ = P2 − 1

2
[
∂

∂Q1
(f2 + g2)− (1− 2µ)fQ1 ]

t′ = D

P1
′ = −∂Γ

∗

∂Q1

P2
′ = −∂Γ

∗

∂Q2
T ′ = 0.

(11)

We remark that the Hamiltonian Γ ∗ has no longer singularities. In fact, the
singular term is:

D[(1− µ) 2ρ
ρ12

+ µ
2ρ
ρ22

] =
1
2ρ3

[(1− µ)ρ22 + µρ12]

and the only singularity of the whole Hamiltonian is at ρ = 0, corresponding
to r1 → ∞, r2 → ∞, as we can check replacing Q1 = Q2 = 0 in (9). In the
transformed Q–plane the origin becomes a new singular point. This, however,
corresponds to infinity in the physical plane and we can conclude that all points
of the finite physical plane have been regularized by the transformation.
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In order to obtain the equations of motion (see (7)) one must evaluate the
function U |h′(w)|2 = (Ω − C/2)|h′(w)|2, which in our case becomes:

U |h′(w)|2 = ρ1
2ρ2

2

32ρ6
[(1− µ)ρ14 + µρ24] + 1

2ρ3
[(1− µ)ρ22 + µρ12]− Cρ1

2ρ2
2

8ρ4
.

(12)
We observe that in (12) all points of the finite physical plane have been regular-
ized by the transformation. Moreover relation (12) allows to express the velocity
of the particle in the regularized coordinates, namely:

|Q̇|2 = 2U |h′(w)|2. (13)

At P̄1, ρ1 = 0, ρ2 = 1, ρ =
1
2
, and equation (13) gives |Q̇|2 = 8(1 − µ), so

that |Q̇| =√8(1− µ). Analogously, at P̄2 the velocity is
√
8µ. We could expect

such finite values for the velocities, since P1 and P2 have been regularized. By
the relations (12), (13) it follows that the absolute value of the velocity in the
regularized plane is determinated once the value of µ is fixed and once the ini-
tial conditions on the position, velocity vector and Jacobi integral is done. In
particular, this property allows us to determine the value of the velocity at the
primaries in the parametric plane. We remark that in the physical plane it is
not possible to determine the value of the velocity at the primaries, since the
equations of motion are singular at these points.

3 The B3 regularization

The problem treated till now can be summarized as follows: two bodies having
masses µ and 1−µ evolve around their center of mass in circular orbits. A third
body of negligible mass moves on the orbital plane of the primaries and is sub-
ject to their gravitational field. A generalization of this problem is the so–called
restricted–circular–spatial three body problem which allows the third particle to
move in the space. The primaries P̄1, P̄2 still revolve in the same plane around
their center of mass describing circular orbits. A synodic reference frame is in-
troduced, so that the orbital plane of the primaries x, y rotates with unit mean
motion; the angular velocity vector is normal to the plane along the z–axis, which
forms a right–handed system with the coordinates x, y. Then, the primaries are
fixed on the x–axis, with coordinates P̄1 ≡ (−µ, 0, 0), P̄2 ≡ (1− µ, 0, 0). A third
particle P̄3 of infinitesimal mass evolves in the space (x, y, z), not influencing
the motion of the primaries, but subject to the Newtonian gravitational forces
of P̄1, P̄2.
Denoting by (x, y, z) the coordinates of P̄3, the equations of motion describing
the dynamics of P̄3 are:

ẍ− 2ẏ = Ωx
ÿ + 2ẋ = Ωy
z̈ + z = Ωz,
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where

Ω(x, y, z) =
1
2
(x2 + y2 + z2) +

1− µ
r1

+
µ

r2
,

and

r1 =
√
(x+ µ)2 + y2 + z2, r2 =

√
(x− 1 + µ)2 + y2 + z2.

The Hamiltonian function describing the spatial problem in the synodic reference
frame is given by:

H(P1, P2, P3, Q1, Q2, Q3) =
1
2
(P 2

1 +P
2
2 +P

2
3 )+Q2P1−Q1P2− 1− µ

r1
− µ
r2
, (14)

where: r1 =
√
(Q1 + µ)2 +Q2

2 +Q
2
3, r2 =

√
(Q1 − 1 + µ)2 +Q2

2 +Q
2
3.

Also in the spatial case we are dealing with a Hamiltonian which presents two
singularities at both attracting centers, corresponding to r1 = 0, and r2 = 0.
In order to regularize such singularities we can perform a generalization of
the Birkhoff transformation. In the spatial case, four generalized coordinates
v1, v2, v3, v4 are introduced, the derivation of the Birkhoff transformation is more
complicated.
In this section, we derive the Birkhoff transformation in a geometrical way (see
[6], [8], [4]), which is complementary to the presentation done for the planar
case.
We recall that P̄1 ≡ (−µ, 0, 0), P̄2 ≡ (1 − µ, 0, 0) have fixed locations on the
x–axis. By means of a translation, we place P̄1 and P̄2 at (−1, 0, 0) and (1, 0, 0),
respectively.
The transformation applied to the x–coordinate is:

x =
1
2
x1 + (

1
2
− µ),

where x1 is the new abscissa, while the other coordinates remain unchanged.
Now, we perform an inversion, that is a transformation by reciprocal radii, hav-
ing center at (1, 0, 0) and radius equal to

√
2. The coordinates of P̄1, P̄2 are

transformed following the rules:

x2 − 1 =
2(x1 − 1)

(x1 − 1)2 + y21 + z
2
1

y2 =
2y1

(x1 − 1)2 + y21 + z
2
1
, z2 =

2z1
(x1 − 1)2 + y21 + z

2
1
.

Therefore, P̄1 is put at the origin of the (x2, y2, z2) space, while P̄2 is ejected at
infinity.
We next perform a KS–transformation, which has not only regularizing proper-
ties at the points of the finite physical plane (in this case the origin), but also at
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infinity, and allows us the regularization of both singularities. Instead of the co-
ordinates (x2, y2, z2) by means of the KS–transformation a 4–dimensional space
u1, u2, u3, u4 is introduced as

x2 = u21 − u22 − u23 + u24
y2 = 2(u1u2 − u3u4)
z2 = 2(u1u3 + u2u4).

Then we perform another inversion so that P̄1 is placed at (−1, 0, 0) and P̄2 at
(1, 0, 0); let

u1 − 1 =
2(V1 − 1)

(V1 − 1)2 + V 2
2 + V 2

3 + V 2
4

uk =
2Vk

(V1 − 1)2 + V 2
2 + V 2

3 + V 2
4
, k = 2, 3, 4.

Finally we place P̄1 and P̄2 at (−1
2
, 0, 0) and (

1
2
, 0, 0), respectively. The for-

mulae which link the coordinates of the physical plane (x, y, z) to those of the
parametric plane (v1, v2, v3, v4) are given by:

x =
1
2
− µ+ 1

2
[v1 +

v1(v24 +
1
4 )

v11 + v
2
2 + v

2
3
]

y =
1
2
[v2 +

v2(v24 − 1
4 )− v3v4

v11 + v
2
2 + v

2
3

]

z =
1
2
[v3 +

v3(v24 − 1
4 ) + v2v4

v11 + v
2
2 + v

2
3

].

Notice that if v3 = v4 = 0, then we get the planar Birkhoff transformation.
Let s be the fictitious time introduced by dt = Dds, where:

D =
r1r2

v11 + v
2
2 + v

2
3
,

r1 =
1
2

(v1 +
1
2
)2 + v22 + v

2
3 + v

2
4√

v11 + v
2
2 + v

2
3

, r2 =
1
2

(v1 − 1
2
)2 + v22 + v

2
3 + v

2
4√

v11 + v
2
2 + v

2
3

.

By the relations:

d

dt
=

1
D

d

ds

d2

dt2
=

1
D2

d2

ds2
− 1
D3

dD

ds

d

ds
,
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the equations of motion in terms of the new time become:

Dx′′ −D′x′ − 2D2y′ = D3Ωx
Dy′′ −D′y′ + 2D2x′ = D3Ωy
Dz′′ −D′z′ = D3Ωz.

(15)

Notice that also in this case the singularities are eliminated. In fact, the singular-
ities appear at the r.h.s. of (15), where Ωx, Ωy, Ωz contain terms proportional to
1
r31

and
1
r32
. Since D3 is proportional to r31r

3
2, the quantities D

3Ωx, D
3Ωy, D

3Ωz

do not contain singularities at the attracting centers.
The only singularity still present corresponds to v1 = v2 = v3 = 0, however this
is not a true singularity, since these conditions correspond to P̄3 placed at ∞,
which does not have physical meaning in our problem.

4 Numerical integration

We now show results obtained by numerical integration of the equations of mo-
tion relative to the planar circular three body problem before the Birkhoff reg-
ularization and after regularization. We recall that the Hamiltonian function
describing the problem is given by:

Hpre(y1, y2, p̃1, p̃2) =
1
2
(p̃12 + p̃22) + y2p̃1 − y1p̃2 − 1− µ

r1
− µ

r2
, (16)

while after the regularization, the Hamiltonian function assumes the form:

H2(Q1, Q2, P1, P2) =
1
2D

[P12 + P22 + P1
∂

∂Q2
(f2 + g2)

−P2 ∂

∂Q1
(f2 + g2)− (1− 2µ)(P1gQ1 + P2fQ1)]− (1− µ) 2ρ

ρ12
− µ 2ρ

ρ22
. (19)

Following the numerical exploration of the restricted three body problem per-
formed by Michel Hénon ([2]) we initially select a set of initial conditions for
the positions, impulses and masses, and we integrate the equations of motion
associated to the Hamiltonian (16) and (19). Then we plot the orbits on the
plane (y1, y2), (Q1, Q2) respectively, and we compare the orbits corresponding
to the same initial conditions before and after the regularization. More precisely,
we fix a value of the Jacobi integral C relative to the Hamiltonian (16), and
the initial conditions on the mass µ, on the position and on p̃1, while we derive
the initial condition on p̃2 as a function of the energy integral. Then, by means
of the relations which link the pre–regularized and post–regularized variables,
we obtain the initial conditions relative to Q1, Q2, P1, P2, and we integrate the
two systems of equations of motion for the Hamiltonian (16) and (19). Typi-
cally we have three kinds of dynamics: regular, chaotic and escape orbits. In
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Fig. 2. Regular orbit post–regularization

Figs. 1, 2 we report a regular orbit in the (y1, y2)–plane and in the (Q1, Q2)–
plane respectively, while Figs. 3, 4 show a chaotic orbit in the (y1, y2)–plane and
in the (Q1, Q2)–plane respectively. We observe that after the regularization the

primaries are placed at the positions (−1
2
, 0), (

1
2
, 0) respectively. Moreover, the

orbits after the regularization are more wide, namely during close encounters the
distances between the satellite and the primaries are larger after regularization.
We do not show figures concerning escape orbits because they become unbounded
in a very short time and it is not so interesting to show their graph.
The Hamiltonian formalism used to describe the Birkhoff transformation is a
very useful tool for further studies concerning the application of perturbation
theories to the Hamiltonian of the restricted three body problem, or for a numer-
ical investigation of the behaviour of chaoticity indicators (Lyapunov exponents,
local Lyapunov indicators, fast Lyapunov indicators) before and after the regu-
larization.
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Fig. 4. Chaotic orbit post–regularization
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Abstract. We review the regularization procedure for a perturbed two-body problem
where the rescaled time variable is taken to be either the fictitious time or the gener-
alized eccentric anomaly. We use Hamiltonian formalism to simplify the problem with
suitable canonical transformation and we make a comparison between the correspond-
ing transformed systems. Using perturbative methods we also discuss the possibility of
analytical integration of the equations of motion and some related problem.

1 Introduction

In this lecture we want to make a comparison between two possible regulariza-
tions: one uses the original fictitious time variable (as in [1]) and the other the
generalized eccentric anomaly; the comparison is made on a perturbed two body
system using Hamiltonian formalism. Following [2], [3], [4], and especially [5],
we perform all transformations needed to put the Hamiltonian, and then the
equations of motion, in the best form to be handled with perturbative methods
and numerical integration procedures. In particular we use Kustaanheimo-Stiefel
transformation and Hamilton–Jacobi method. Hamiltonian formalism is shown
to be best suited for this since every transformation is found in canonical form
so that Hamiltonian structure is preserved and the analytical expansion that are
needed can be performed on a single function.
We present here only the two transformed Hamiltonians and the differences in
the related equations, but the choice of the independent time–like variable has
some effects also on the rate of convergence of the series involved and then also
on the accuracy in the results of integration: for instance the generalized eccen-
tric anomaly variable is much more effective for very elongated orbits and even
in presence of collisions (see [5]).
Since perturbative methods strongly depend on the particular perturbation, we
give only an idea of how it is possible to get rigorous results using Fourier series
expansion and which are the problems that arise with this method.

2 Regularization procedure

In this chapter, we shortly review the general Kustaanheimo-Stiefel (K–S) regu-
larization procedure and apply it to the fictitious time and generalized eccentric
anomaly cases. We also look for canonical transformations which could simplify
the two Hamiltonians.

D. Benest and C. Froeschlé (Eds.): LNP 590, pp. 63–71, 2002.
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2.1 The general case

Let us consider a generic time–dependent Hamiltonian of a three degrees of
freedom system, that is a function of seven variables, with p conjugated to x

H(t,x,p) x,p ∈ IR3 .

As we have already seen – in the K–S regularization – to regularize both the
equations and the solutions one first has to consider an extended phase–space
by letting x0 = t and p0 = −H along the solutions, with the resulting eight
variables Hamiltonian

Hh(x0,x, p0,p) ≡ H(x0,x,p) + p0

then one has to pass to a rescaled time by introducing a new independent variable
– “e.g.” s – related to t in order to regularize solutions – “e.g.” dt/ds=D – to
get a new Hamiltonian

Ĥ(x0(s),x(s), p0(s),p(s)) ≡ DHh

and finally one has to perform a coordinate change of variables to regularize also
the equations of motion and the resulting Hamiltonian is forced to depend on
two more variables

H̃(u0,u, w0,w) u,w ∈ IR4 .

2.2 The fictitious-time case

Let us consider as an application, from know on, the time–dependent Hamilto-
nian of a perturbed two body problem as, for example, in a third body attraction
both in the interior and in the external case:

H(t,x,p) =
1
2
|p|2 − k2

r
+ εV (t,x) x,p ∈ IR3 . (1)

The corresponding homogeneous Hamiltonian Hh obtained, as we have said, by
letting x0 = t and p0 = −H along the solutions is

Hh(x0,x, p0,p) =
1
2
|p|2 − k2

r
+ εV (x0,x) + p0 (2)

and passing to the rescaled (or “fictitious”) time s by the relation

dt

ds
= r

we get

Ĥs(x0(s),x(s), p0(s),p(s)) =
1
2
|p|2r − k2 + εrV (x0,x) + rp0 .
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In order to apply the K–S transformation we remind the basic formulae derived
from the transformation matrix Λ, which is the 4× 3 matrix

Λ(u) ≡

u1 −u2 −u3 u4

u2 u1 −u4 −u3
u3 u4 u1 u2


 ,

that is the change of variables, with u,w ∈ IR4,

x = Λ(u)u , x0 = u0 ⇒ r ≡ |x| = |u|2

p =
1
2r

Λ(u)w , p0 = w0 ⇒ |p|2r =
1
4
|w|2

leading to the Hamiltonian

H̃s(u0,u, w0,w) =
1
8
|w|2 − k2 + ε|u|2V (u0,u) + |u|2w0 .

It is finally useful to get the Hamiltonian in a slightly different form rescaling H̃
by 1/4 and setting u0 = 2ū0, w0 = 2w̄0, u = ū and w = 4w̄ :

H̄s(ū0, ū, w̄0, w̄) =
1
2
|w̄|2 − k2

4
+

ε

4
|ū|2V (ū0, ū) +

1
2
w̄0|ū|2 . (3)

Hamilton equations are then in closed form, given the initial conditions, for the
Hamiltonian H̄s

dū0
ds

=
∂H̄s

∂w̄0
=

1
2
|ū|2 =

1
2
r (“i.e.”

dt

ds
= r)

dū

ds
=

∂H̄s

∂w̄
= w̄

dw̄0

ds
= −∂H̄s

∂ū0
= −ε

4
|ū|2 ∂V

∂ū0
(“i.e.”

dH̄

dt
= −ε∂V

∂t
)

dw̄

ds
= −∂H̄s

∂ū
= −w̄0ū− ε

4
∂

∂ū
|ū|2V

Notice that these regularized equations contain both time transformation and
energy law, that they are as simple as a perturbed armonic oscillator with fre-
quency

√
w̄0 and that the frequency is constant if V is independent of t.

2.3 The generalized eccentric anomaly case

Let H be the Hamiltonian in (1) which we assume to be negative (elliptic case)
and Hh as in (2) with p0 > 0. A different regularization is obtained using, in
place of s, the independent variable E – the generalized eccentric anomaly –
defined by

dt

dE
=

r√
2p0
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which puts the Hamiltonian ĤE ≡ ĤE(x0(E),x(E), p0(E),p(E)) in the form

ĤE =
1
2
|p|2 r√

2p0
− k2√

2p0
+ ε

r√
2p0

V (x0,x) +
r

2

√
2p0 .

The K–S transformation gives in this case

H̃E(u0,u, w0,w) =
1
8
|w|2√
2w0

− k2√
2w0

+ ε
|u|2√
2w0

V (u0,u) +
|u|2
2
√

2w0 .

It is possible to eliminate the dependence on the square root of w0, keeping the
advantages of the Hamiltonian formalism, by looking for a canonical tranforma-
tion given by a suitable generating function. It can be easily checked that the
function

S(w̄0, w̄, u0,u) =
2k√−w̄0

4∑
i=1

uiw̄i +
k4

2
u0
w̄2
0

generates the transformation

ū0 =
∂S

∂w̄0
=
−k4
w̄3
0
u0 − 1

2w̄0

4∑
i=1

ūiw̄i

ū =
∂S

∂w̄
=

2k√−w̄0
u

w0 =
∂S

∂u0
=

k4

2w̄2
0

w =
∂S

∂u
=

2k√−w̄0
w̄

leading to the Hamiltonian

H̄E(ū0, ū, w̄0, w̄) =
1
2
|w̄|2 + w̄0 + ε

w̄2
0

4k4
|ū|2V (ū0, ū, w̄0, w̄) +

1
8
|ū|2 . (4)

Hamilton equations for the Hamiltonian H̄E are, also in this case and for any
given initial conditions, in closed form

dū0
dE

=
∂H̄E

∂w̄0
= 1 +

ε

4k4
|ū|2 ∂

∂w̄0
w̄2
0V

dū

dE
=

∂H̄E

∂w̄
= w̄ +

ε

4k4
w̄2
0|ū|2

∂V

∂w̄
dw̄0

dE
= −∂H̄E

∂ū0
= − ε

4k4
w̄2
0|ū|2

∂V

∂ū0
dw̄

dE
= −∂H̄E

∂ū
= − ū

4
− ε

4k4
w̄2
0
∂

∂ū
|ū|2V .

Notice that regularized equations in this case are as simple as in the fictitious-
time case but with some differences: 1) the frequency is always constant (equal
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to 1/2), 2) in the unperturbed case (ε = 0) besides w̄0 = const one gets ū0 =
E +const, 3) in the non conservative case the perturbation is more complicated
since V depends also on w̄0 and w̄.

3 Analytic perturbative methods

In this section we show how the two systems with Hamiltonian (3) and (4) can be
analytically integrated, at least at first order, using Hamilton–Jacobi canonical
transformations and we discuss integration at higher orders.

3.1 Hamilton–Jacobi for the fictitious-time case

First we look for a canonical transformation that would transform the Hamilto-
nian (3) in the unperturbed case, that is

H0
s =

1
2
|w̄|2 +

1
2
w̄0|ū|2 =

1
2

4∑
i=1

w̄2
i +

1
2
w̄0

4∑
i=1

ū2i

in a new Hamiltonian which would depend only on the “action” variables. Let

S(α0,α, ū0, ū) = α0ū0 +
4∑
i=1

∫ √
2αi − α0ū2i dūi

be the generating function which defines the transformation

ū0 = β0 +
1
2
α
− 3

2
0

4∑
i=1

αi[
√
α0βi − 1

2
sin(2

√
α0βi)]

ūi =
√

2αi
α0

sin(
√
α0βi)

w̄0 = α0

w̄i =
√

2αi cos(
√
α0βi) ,

leading to the transformed Hamiltonian

H0
s (β0(s),β(s), α0(s),α(s)) = α1 + α2 + α3 + α4 (5)

which obviously implies that β0, α0, α are constants and β is linear with respect
to s. If we now insert the solution of the unperturbed system with Hamiltonian
(5) in the perturbed Hamiltonian (3) we get

Hs = α1 + α2 + α3 + α4 +
ε

2α0

4∑
i=1

αi sin2(
√
α0βi)V (β0,β, α0,α) .

Finally, it is possible to eliminate the dependence on two variables in the trigono-
metric functions (which complicate the successive series expansion) making use
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again of the Hamiltonian formalism and looking for another canonical transfor-
mation such that β̄i =

√
α0βi: the generating function

S(α0,α, β̄0, β̄) = −α0β̄0 +
1√
α0

4∑
i=1

αiβ̄i

defines the transformation

ᾱ =
1√
α0
α ᾱ0 = α0

β =
1√
α0
β̄ β0 = −1

2
α
− 3

2
0

4∑
i=1

αiβ̄i + β̄0

and the final Hamiltonian

H1
s =
√
ᾱ0(ᾱ1 + ᾱ2 + ᾱ3 + ᾱ4) +

ε

2
√
ᾱ0

4∑
i=1

ᾱi sin2 β̄i V (β̄0, β̄, ᾱ0, ᾱ) . (6)

The equations of motion are in the unperturbed case:

ᾱ = const ᾱ0 = const

β̄i =
√
ᾱ0s + const β̄0 =

1
2
√
ᾱ0

(ᾱ1 + ᾱ2 + ᾱ3 + ᾱ4)s + const .

3.2 Hamilton–Jacobi for the generalized eccentric anomaly case

The Hamiltonian (4) in the unperturbed case is now

H0
E =

1
2
|w̄|2 +

1
8
|ū|2 + w̄0

and the generating function is, separating the additive element w̄0, that of an
harmonic oscillator with frequency 1/2

S(α0,α, ū0, ū) = α0ū0 +
4∑
i=1

∫ √
2αi − 1

4
ū2i dūi .

The generated transformation

ū0 = β0

ūi = 2
√

2αi sin(
βi
2

)

w̄0 = α0

w̄i =
√

2αi cos(
βi
2

)
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inserted in the perturbed case, gives the new Hamiltonian

HE = − k2√
2α0

+ α1 + α2 + α3 + α4 +
ε

α0

4∑
i=1

αi sin2(
βi
2

)V (β0,β, α0,α) .

The solution of the equations of motion are, in the unperturbed case:

α = const α0 = const
βi = E + const β0 = k2(2α0)−

3
2E + const .

3.3 Series expansion

Let us consider, as an example, the problem of a third body attraction with
the perturbing body on a fixed periodic orbit of period 2π/ν. Using Fourier
expansion we get

V = V (x1, x2, x3, cos(νt), sin(νt), . . .)

and using K–S transformation in the fictitious time case the perturbation be-
comes

V = V (u1, u2, u3, u4, cos(2νu0), sin(2νu0), . . .) .

The Hamilton–Jacobi transformation gives simply

ui =
√

2αi(α0)−
1
4 sinβi

u0 = β0 − 1
4α0

4∑
i=1

αi sin(2βi)

and setting U = (ε/4)|u|2V the Hamiltonian (6) can be written as

H1
s =
√
α0(α1 + α2 + α3 + α4) + U(β0,β, α0,α) .

If we look at the periods of the functions involved we see that the variables βi
are of constant period so that the ui’s are of period 2π in βi, u0 is of period π in
βi, cos(2νu0), sin(2νu0) are of period π in βi and π/ν in β0 and finally U is of
period 2π in βi and π/ν in β0. Notice that in the conservative case (for example
in the oblateness problem) if V were a polynomial in the variables x1, x2, x3, r,
then U might be written as a sum of a finite number of Fourier components in
βi which is not the case, for instance, using Delaunay elements.
In the general case one can expand U using Fourier series in β0, β1, β2, β3, β4,
but the term cos(2νu0) brings in an infinite number of components:

cos(2νu0) = cos 2ν(
1

4α0

4∑
i=1

αi sin(2βi)− β0)

and using the formula

cos(A sinλ + B) =
+∞∑
j=−∞

Jj(A) cos(jλ + B)
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where Jj are Bessel functions, one gets

cos(2νu0) =
∑

j1,j2,j3,j4

4∏
i=1

Jji(
ναi
2α0

) cos 2(j1β1 + j2β2 + j3β3 + j4β4 − νβ0) .

So the potential U can be expanded in a fivefold Fourier series with respect to
β0, β1, . . . , β4:

U = εf0(α0,α) + ε
∑

n0,...,n4

fn0n(α0,α) exp[i(2νn0β0 + n1β1 + · · ·+ n4β4)] .

Notice that one main advantage of Hamiltonian formalism is that this expansion
is needed only for one function (Hs).
As usual in perturbation theory, it is often possible to push the perturbation
to higher orders and to get an approximate solution by means of canonical
transformations (i.e. H = H0+εV → H ′ = H ′0+ε2V ′) to the expence of getting
a much more complicated perturbing function.

3.4 First-order perturbation

As an example of rigorous qualitative results of analytic perturbative methods,
we derive first order equations of the previous example.
Let n · β ≡ n1β1 + · · ·+ n4β4 and the Hamiltonian be

H1
s =
√
α0(α1 + α2 + α3 + α4) + εf0(α0,α)

+ε
∑

n0,...,n4

fn0n(α0,α) exp[i(2νn0β0 + n · β)] ,

then the corresponding Hamilton equations are

dαi
ds

= −ε
∑
n0n

nifn0n(α0,α) exp[i(2νn0β0 + n · β)]

dα0

ds
= −2εν

∑
n0n

n0fn0n(α0,α) exp[i(2νn0β0 + n · β)] (7)

dβi
ds

=
√
α0 + ε

∂f0
∂αi

(α0,α) + ε
∑
n0n

∂fn0n

∂αi
(α0,α) exp[i(2νn0β0 + n · β)]

dβ0
ds

=
1

2
√
α0

(α1 + α2 + α3 + α4) + ε
∂f0
∂α0

(α0,α)

+ε
∑
n0n

∂fn0n

∂α0
(α0,α) exp[i(2νn0β0 + n · β)] .

Since the variables α0, α1, . . . , α4 are constant in the unperturbed motion, the
solution

α0 = α0
0 = const αi = α0

i = const

β0 = β00 +
1

2
√

α0
0

(α0
1 + α0

2 + α0
3 + α0

4) βi = β0i +
√

α0
0s
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can be plugged in the system (7) after the expansion of the terms
√
α0 and

1/
√
α0.

The system contains now sums of trigonometric terms with arguments:

2νn0β00 + n1β
0
1 + · · ·+ n4β

0
4 + [

νn0√
α0
0

(α0
1 + · · ·+ α0

4) +
√

α0
0(n1 + · · ·+ n4)]s .

The integration of such terms produces a secular perturbation for all n0,n such
that

νn0√
α0
0

(α0
1 + α0

2 + α0
3 + α0

4) +
√

α0
0(n1 + n2 + n3 + n4) = 0 ,

i.e. in presence of isotropic resonances:

n0 = 0 and n1 + n2 + n3 + n4 = 0

or physical resonances:

n0 
= 0 and 2ν(α0
1 + α0

2 + α0
3 + α0

4)n0 + α0
0(n1 + n2 + n3 + n4) = 0

It is then possible to see that the resonance conditions depend on the mean
motion ν of the perturbing body and on the initial values α0

0, α
0
1, . . . , α

0
4 of the

particle.
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Abstract. We present recent results on the existence of non-collision singularities and
on the regularizability of multiple or simultaneous collisions in the solution of the n-
body problem. The first problem is obviously only theoretical but its solution gave new
impulse to recent studies on dynamical systems applied to space travels and planetary
sciences. We review the main results which led to Xia’s and Gerver’s examples which
for the first time gave an affirmative proof of Painlevé’s conjecture. The second problem
is only sketched, listing several papers and results of the last ten years, and has been
one of the many ingredients in Xia’s proof.

1 Introduction

The long lasting conjecture made by Painlevé more than a century ago has been
clarified and proved in the last thirty years. We present here a short history of
the conjecture and the main participants to its solution. We also describe the
problem and the solutions obtained in recent years as well as related problems
and new questions which remain still unanswered. We have mainly used the
references [4], [9], [11], [24], [31] for the past and present history of the problem
and the original articles for the presentation of its different solutions.

We would like to cite a remark of J. Moser presenting the proof of Painlevé’s
conjecture as one of the significant advances in the field of dynamical systems
during the last 50 years ([24]): “Clearly this solution is not of any astronomical
significance. Why do I present it: It shows, in one example, the progress gained
from the study of hyperbolical dynamical systems which provided the under-
standing and the tools for the solution of this problem. It also reminds us of
the efforts that go in the studies of singularities in partial differential equations,
e.g. of the Navier–Stokes equation, provided they exist! One usually thinks of
singularities as a local phenomenon, but even this (simple!) classical example of
ordinary differential equations exhibits such complicated singularities of nonlocal
type, whose existence was doubted for a long time”.

2 Non-collision singularities in Newtonian systems

In this chapter, we shortly review the history of the problem starting from
Painlevé and von Zeipel.

D. Benest and C. Froeschlé (Eds.): LNP 590, pp. 72–80, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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2.1 The n-body problem

Given n points Pi with masses mi, positions qi ∈ IR3 and velocities q̇i ∈ IR3 we
have

miq̈i =
∑
j �=i

mimj

r3ij
(qi − qj) =

∂U

∂qi
(i = 1, ...n) (1)

where rij ≡ |qi − qj | is the distance between Pi and Pj ; U is the potential

U =
∑
j<i

mimj

rij

which is real analytic on IR3n \ ∆ where ∆ is the “collision set”

∆ ≡
⋃
i<j

∆ij ≡
⋃
i<j

{q ≡ (q1, ..., qn) ∈ IR3n s.t. qi = qj}

the set of configurations where rij = 0 for some i �= j (i.e. collisions) and where
a “singularity” of the equation of motion (1) occurs.

Here we would like to use the word singularity for the solution of (1):

Definition 1: A solution q(t) of (1) has a singularity at time t∗ <∞ if it cannot
be analitically extended beyond t∗.

Obviously (in the n-body problem) a collision is also a singularity. Is any sin-
gularity always a collision? The question was only partially answered by Painlevé
and it is still known as “Painlevé’s conjecture” ([25]).

Theorem 1 (Painlevé, 1895): The n-body problem has the property that q(t)
has a singularity at t = t∗ if and only if q(t)→ ∆ as t→ t∗.

But the condition q(t)→ ∆ does not necessarily imply a collision:

Definition 2: A singularity at time t∗ is a collision singularity if there exists
δ ∈ ∆ such that q(t)→ δ as t→ t∗.

Definition 3: A non-collision singularity is a singularity which is not a collision
singularity. (That is limt→t∗ q(t) would not exist on ∆).

Do non-collision singularities exist?

Theorem 2 (Painlevé): For n = 3 all singularities are collision singularities.

Painlevé’s conjecture: For n ≥ 4 the n-body problem admits solutions with
non-collision singularities.
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Let

I =
n∑
i=1

1
2
mi|qi|2

be the moment of inertia of the system (which is also a measure of the size
of the system). It is easy to see that the limit of I as t → t∗ always exists: in
fact the singularity at t∗ implies that q(t) → ∆ as t → t∗ which means that
the potential U and (by Lagrange’s Identity) also Ï = U + 2h tends to infinity
so that, near t∗, Ï(t) is greater than 0 which is a sufficient condition for the
existence of the limit.
In 1908, in a four pages article communicated by A. Lindstedt to a Swedish jour-
nal ([43]), H. von Zeipel gave the first main contribution to the problem raised
by Painlevé. The theorem that now takes his name had alternate consideration
among the scientific community: it was reformulated independently by Chazy in
1920 ([3]), it was considered incomplete by Wintner in his 1941 book on celestial
mechanics ([41]), it was then fixed in details by Sperling ([36]) thirty years later
to be finally recognized as correct by McGehee in 1986 ([22]) couriously only
two years before Xia’s thesis with the first proof on the existence of non-collision
singularities.

Theorem 3 (von Zeipel, 1908): If a non-collision singularity occurs at t∗ then
limt→t∗ I(t) =∞.

In other words, a non-collision singularity can occur only if the system, or
some of its parts, becomes unbounded in finite time.

How can a particle go to infinity in finite time? In a different problem we
can make a trivial example: the scalar differential equation ẋ = x2 with initial
condition x(0) = x0 > 0 has the explicit solution x(t) = x0/(1 − x0t) which
tends to infinity as t→ t∗ = 1/x0. In the n–body problem such a particle would
still have to acquire an infinite amount of kinetic energy which is not forbidden
since U is not bounded from below: what is needed is a very close encounter
with another particle not only once but infinitely many times. How can this be
accomplished for more than three particles?

The idea to overcome the problem is related to double and triple collisions:
they were studied already by Sundman ([37]) in 1912, Siegel ([32]) in 1941 and
Levi-Civita ([17]), but their work dealt with collision orbits with no descrip-
tion of the flow near these singularities. Starting from numerical experiments on
Pythagorean problem in the late 60’s ([38]) and then explained with triple en-
counters in the 70’s ([21], [40]) it was made clear that the result of going close to
a triple collision can be the formation of a binary system with the third particle
moving far away with enormous speed. In the same years, research on the the-
oretical aspects about collisions singularities in the n-body problem continued
with important results due mainly to Siegel and Moser ([33]), Pollard and Saari
([27], [28], [29]) , Conley and Easton ([5], [6], [12]).

In his 1974 paper ([21]), originated by a collaboration with Conley, Mc Gehee
used “polar coordinates” to blow up the singularity set, for a triple collision in
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the collinear three-body problem, and to replace it with an invariant boundary
called collision manifold, extending the dynamical system to a new flow on a
augmented phase space which is much easier to study on the boundary. This
new idea was going to be the key tool in Xia’s proof.

Collision singularities correspond to hyperbolic rest points and orbits that
reach collision in finite time approach these rest points as the new rescaled time
(“blow-up”) approaches infinity. The problem is then reduced to study the stable
and unstable manifolds of these rest points.

3 The solution

3.1 The example of Mather and McGehee

The first breakthrough towards the solution of the problem was made in 1975
by Mather and McGehee ([20]) for the collinear four-body problem: four point
masses (m1,m2,m3,m4) on a stright line with m1 equal to m2 forming a binary
system which moves towards minus infinity, m4 greater than m1 leading to plus
infinity and m3 much smaller than m1 going back and forth with increasing
velocity. It was the first example of an unbounded solution in finite time in
a newtonian problem but this result was achieved with an infinite number of
regularized binary collisions and therefore it did not solve Painlevé’s Conjecture.

With a correct timing argument (that is with an appropriate symbolic di-
namic proof) double collisions (m3, m4) and close to triple collisions (m1, m2,
m3) can repeat infinitely often within a finite period of time. The authors were
able to prove that there exists, for this particular system, a Cantor set of initial
conditions leading to such a particular behaviour.

3.2 The first example of Gerver

Gerver’s tentative solution appeared in 1984, ([15]), and dealt with a planar
five-body problem: m1,m3,m4 of comparable size, m2 much larger than m1 and
m5 much smaller than the other masses. The methods used by Gerver were
“elementary”, did not required new technique, but he needed a huge amount of
calculations for a complete proof of the correct behaviour of his model.

He imagined m1 to be on an almost circular orbit around m2 with m3 and
m4 at a much larger distance and m2, m3, m4 at the vertices of a triangle which
is moving homotopically. m5 moves rapidly around the other four bodies with
|q̇5| >> |q̇1|.

The revolution time of m5 around the triangle decreases each time it passes
close to m1 and m2, since it picks up some kinetic energy from the binary system
which reduce the distance between m1 and m2 but is enough to compensate a
faster expansion of the triangle due to the interaction of m5 with the masses at
its vertices.

This example was only heuristic: it didn’t work, or at least Gerver was not
able to prove it in all details. What he presented had an explicit title: “A possible
model for a singularity without collisions...” recognizing his impossibility to find
a complete proof of such a five-body model.
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Fig. 1. Gerver’s first example

3.3 The example of Xia

The first complete proof of Painlevé’s conjecture was finally obtained in Xia’s
thesis in 1988 (later adjusted and fixed with his 1992 article in the Annals of
Mathematics). Xia, ([42]), considered two binaries (m1,m2) and (m3,m4) on
opposite planes perpendicular to the z-axis with m1, m2 and m3, m4 symmetric
with respect to the z-axis where m5 is moving. Such isosceles configurations, ex-
pecially in connection with triple collisions, where studied extensively by Simó,
Devaney and Moeckel (see [34], [8] and [23]. A new approach on simmetric prop-
erties in the n-body problem can be found in [1] which had a featured review
from Math. Rev. in 1998). In [34], [8] a large open set of “allowable” masses is
found, which means that if properly organized these masses behave like in [21],
[40] with one particle (here m5) acquiring enormous speed. It is interesting to
note that this behaviour is possible with m5 significantly heavier than two equal
masses forming a binary and that this is precisely the case that works also in
Xia’s example.

The proof for this spatial five-body model is stated using McGehee coor-
dinates together with a lot of previous results on the subject and contains also
many new ideas; it also generalize to any number of particles greater than five. In
this model the center of mass is fixed at the origin, accounting for only six degree
of freedom; setting the angular momentum to zero (the two binaries rotating in
opposite directions) and fixing the energy one can consider a ten-dimensional
phase space Ω.

Let q(x; t) be the trajectory of the system with initial condition x and Σ ⊂ Ω
be the set of initial conditions which end up in a triple collision of P1, P2, P5
with central configuration. The result is stated in the following Theorems:
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Fig. 2. Xia’s example

Theorem 4 (Xia, 1992): There exist m1 = m2, m3 = m4, m5 so that one
can find x∗ ∈ Σ such that q4(x∗; t∗) = q5(x∗; t∗), “i.e.” x∗ ends up in a simul-
taneous triple (P1, P2, P5) and binary (P3, P4) collision. Moreover, for some
3-dimensional surface Π ⊂ Ω with x∗ ∈ Π ∩ Σ, there exist an uncountable set
Λ ⊂ Π with the property that for any x ∈ Λ there exists 0 < t∗ < ∞ such
that q(x; t) is defined on [0, t∗) (possibly with binary collisions) and satisfies
z1(t) = z2(t)→ −∞, z3(t) = z4(t)→ +∞ for t→ t∗.

In other words there exist unbounded solutions in finite time (possibly with
binary collisions).

Theorem 5 (Xia, 1992): Let x∗ ∈ Σ, Λ ⊂ Π ⊂ Ω as in Theorem 4. Then one
can find x∗ ∈ Σ so that there exists Λ0 ⊂ Λ such that for any x ∈ Λ0 (also
uncountable) q1(x; t) �= q2(x; t), q3(x; t) �= q4(x; t) for any t ∈ [0, t∗).

In other words the solutions starting from Λ0 experience a non-collision sin-
gularity.

3.4 The second example of Gerver

Gerver’s second solution appeared in 1991 ([16]) and dealt with a planar 3n-
body problem (n large): n pairs of equal masses mi1 = mi2 with i = 1, . . . , n on
a regular polygon and n particles of smaller mass mi3 moving around it. When
a small particle interacts closely with a binary it gains part of the kinetic energy
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Fig. 3. Gerver’s second example

of the pair and exchange with the binary part of its momentum, forcing the two
particles of the binary to come closer to their baricenter, whose distance from
the center of the polygon increases. The idea is the same of his previous attempt,
but he made two improvements: the use of rotational symmetry to simplify the
problem and consequently the introduction of a new free parameter, n, to get
more freedom in the hard part of its calculations. The first planar example of
Painlevé’s conjecture can then be stated in the following way: there exists an
integer n, suitable values of mi1 , mi3 (i = 1, . . . , n) and of initial velocities such
that the system becomes unbounded in finite time avoiding all possible collisions.

4 Multiple and simultaneous binary collisions

About multiple collisions I will only refer to [26], [2], [10], [18], [39], [7] as some
of the latest articles on a subject which has been extensively studied in many
previous works and, as we have seen, has been a crucial tool on both Xia’s and
Gerver’s construction.

Also simultaneous binary collisions (SBC) entered in Xia’s proof and even
if their nature was known to be very close to that of a single binary collision
(they are algebraic branch points, [36], and the motion nearby closely mimic the
behavior of a single binary collision) several results have been obtained recently.



Collisions and Singularities in the n-body Problem 79

Simó and Lacomba ([35]) have proved that SBC for the n-body problem and
in any dimension are C0-block regularizable in the sense of Easton’s Ck-block
regularization: near a SBC orbit there exists a Ck diffeomorphism connecting
collision and near collision orbits with ejection and near ejection orbits and the
motion can be continued beyond the SBC maintaining continuity with respect
to initial conditions (see [12]); their result has been used by Xia and cited in a
preprint form (see [42]).

El Bialy ([13], [14]) has shown that SBC in one dimension are C1-block
regularizable and that the series expansion of the SBC singularity has coefficients
which depends analytically on SBC initial conditions.

Martinez and Simó ([19]) have used a geometric approach to get more insight
into the problem and numerical evidence that the degree of differentiability, in
the planar four-body SBC problem, of the block regularization is exactly 8/3.

5 Open questions

There are several questions which remain still open (see [31]):

• Is Painlevé’s conjecture true for n = 4 ?
• Are there planar examples with n small ?
• Are there mass choices for which non-collision singularities cannot occur?
• Let Cn, NCn, Sn be the sets of initial conditions for the n-body problem

leading to a solution of (1) with, respectively, a collision singularity, a non-
collision singularity and a singularity of any kind. We know that the Lebesgue
measure of Cn, µ(Cn), is equal to zero for any n and also that µ(NC4) = 0
([30]) so that the set of initial conditions leading to a singularity µ(Sn) = 0
for n ≤ 4. The same is true for those non-collision orbits where the particles
eventually line up along a line (as in Xia’s example but not in Gerver’s). Is it
true that µ(Sn) = 0 for n ≥ 5 ?
• If CO represents the set of initial conditions leading to a collision of any kind,

is it true that CO represents the set of initial conditions causing any kind of
singulariy ?

The last question has been answered affirmatively by Saari and Xia ([31])
without a proof: as usual in Mathematics, solving a long lasting conjecture set
the basis for new and interesting questions. We hope that Saari–Xia’s conjecture
will not need another century to be eventually proved.
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Triple Collision and Close Triple Encounters

Jörg Waldvogel

Applied Mathematics, ETH, 8092 Zurich, Switzerland

Abstract. In gravitational systems of point masses binary collisions are mathemati-
cally simple and well understood. Collisions of three or more particles are much more
complicated, i.e. a dramatic increase of complexity occurs when the number N of parti-
cles involved in a collision increases from 2 to 3. Collisions of more than three particles
seem to be of the same complexity as triple collisions. However, there are still unan-
swered questions concerning general N -body collisions.

The reason for the complexity of triple collision is the inherent sensitivity to initial
conditions for solutions passing near triple collision, even after a short time. Specifically,
a solution passing near triple collision may change dramatically if the initial conditions
prior to the close encounter are modified infinitesimally. In contrast, this is not the
case for a binary collision.

We use the planar three-body problem as a model in order to discuss the main
features of triple collision of point masses and of its realistic counterpart, the close
triple encounter. This comparatively simple model allows us to study all important
aspects of close encounters of N > 2 gravitationally interacting point masses.

In Chapters 1 and 2 we discuss classical results, beginning with the equations of
motion, then studying relationships between the total angular momentum and triple
collision. C. L. Siegel’s famous series for triple collision solutions, one time considered
the highlight of the theory of triple collision, conclude the traditional part of these
lectures.

Chapter 3 is devoted to studying the relationship between solutions engaging in
a sharp triple collision and neighbouring solutions. The variational equation gives a
rough idea of what is happening. A complete understanding can be achieved by means
of R. McGehee’s concept of the collision manifold, which arises by introducing special
coordinates blowing up all possible states close to triple collision. In this context,
possibilities of regularizing triple collision will be considered.

The close triple encounter may be seen as a particle accelerator that allows to
accelerate point masses to arbitrarily large velocities. This is the key to the existence
of the long-sought non-collision singularities in the motion of a sufficient number of
gravitationally interacting point masses.

1 Basics

A convenient model for studying collision singularities in celestial mechanics is
the gravitational N -body problem, i.e. the problem of the motion of N grav-
itationally interacting point masses in lR3. For triple collisions to be possible
N ≥ 3 is necessary. It turns out that the three-body problem, N = 3, shows all
the essential features of triple collision.

D. Benest and C. Froeschlé (Eds.): LNP 590, pp. 81–100, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



82 Jörg Waldvogel

1.1 The general three-body problem:
equations of motion, integrals of motion

We begin by defining the notation and collecting basic relationships [15,31].
Unless otherwise specified, these relations hold for systems of N > 1 point
masses. Particular properties of the caseN = 3 will be considered in the following
sections.
Let mj > 0, j = 1, . . . , N be N point masses located at the barycentric

positions xj ∈ lR3, i.e.,
N∑
j=1

mj xj = 0 . (1)

With the force function

U(x) :=
∑

1≤j<k≤N

mj mk

|xj − xk| , (2)

where x = (x1;x2; . . . ;xN ) ∈ lR3N , the equations of motion are

mj ẍj =
∂

∂xj
U(x) =: Uxj (x), j = 1, . . . , N , (3)

where dots denote derivatives with respect to time t.
By introducing the momenta

pj := mj ẋj , j = 1, . . . , N (4)

satisfying
∑N
j=1 pj = 0 the kinetic energy becomes

T := 1
2

N∑
j=1

mj |ẋj |2 = 1
2

N∑
j=1

|pj |2
mj

, (5)

and the energy integral states that the total energy (or the Hamiltonian) H is
constant on an orbit:

H := T − U = h = const. (6)

Furthermore, the angular momentum C is a constant of motion:

C =
N∑
j=1

mj xj ∗ ẋj =
N∑
j=1

xj ∗ pj = const., (7)

where ∗ denotes the vector product.

Homogeneity. Some of the basic properties of collisions of all particles in an
N -body problem are intimately connected with the homogeneity of the force
function U and the kinetic energy T . We therefore state Euler’s classical theorem
on homogeneous functions:
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Theorem 1. Let F : x = (x1, . . . , xn) ∈ lRn �−→ F (x) ∈ lR be homogeneous of
degree µ, i.e. for every ε > 0, x ∈ lRn we have F (εx) = εµ F (x). Then

n∑
k=1

xk
∂F (x)
∂xk

= µ · F (x) . (8)

Proof. Differentiate the homogeneity relation (8) with respect to ε and put ε = 1.
⊥
According to the definition (2), U(x) is homogeneous of degree −1, and its

gradient is homogeneous of degree −2:

U(εx) = ε−1 U(x), Uxj (εx) = ε−2 Uxj (x) . (9)

On introducing new scaled variables x̃, t̃ according to

x = εx̃, t = ε
3
2 t̃ (ε > 0) (10)

into the equations of motion (3) we immediately deduce

p = ε−
1
2 p̃, H = ε−1 H̃, C = ε

1
2 C̃ , (11)

where p̃, H̃, C̃ are the scaled momenta, energy, and angular momentum. Inserting
this into (3) yields

Theorem 2. [23]: The equations of motion (3) of the N -body problem are in-
variant under the scaling transformation (10):

mj
d2

dt̃2
x̃j =

∂

∂x̃j
U(x̃), j = 1, . . . , N .

1.2 Angular momentum, Sundman’s theory

The definitions, relations and theorems of this section are fundamental for un-
derstanding triple collision [15,31].

(a) Sundman’s inequality (N -bodies)

We define the (polar) moment of inertia I as

I :=
N∑
j=1

mj |xj |2 . (12)

Differentiating twice and using (5), (6) yields Lagrange’s formula,

1
2
Ï = 2T − U (= T + h = U + 2h) , (13)
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which is the basis for Sundman’s inequality:

2IT ≥ 1
4
İ2 + 1

N
|C|2 , (14)

see, e.g. [15], p. 25. Integration of this differential inequality yields

(b) Sundman’s theorem

Theorem 3. If at time t = t1 all N bodies of an N -body system in lR3 collide,
then the total angular momentum C vanishes for all times t < t1.

Remarks. (i) This implies that in an N -body collision the velocity vector of
every particle has a limiting direction. A gradual spiraling in of all bodies is
excluded.

(ii) The contraposition of Theorem 3 states: If an N body problem has the total
angular momentum C 
= 0, the collision of all N bodies is excluded.

(c) Sundman’s main result

Whereas the previous results hold for any N > 1, we now restrict ourselves
to the three-body problem, N = 3. At the beginning of the 20th century this
problem was considered one of the major unsolved problems of mathematics,
and the “solution” most people had in mind was to express the motion of the
three bodies in terms of known functions. Sundman’s result [18] has to be seen
in this context.
Consider a three-body problem with C 
= 0. Due to Remark (ii) above triple

collision is excluded: therefore the only possible singularities are binary collisions.
These may be regularized by means of the fictitious time

s :=
∫ t

0
(1 + U(x(τ)) dτ (15)

(see the second chapter by A. Celletti and the chapter by G. Della Penna, in this
book, as well as [7,20]). Sundman showed that the motion of the three bodies is
described by functions which are analytic in the strip

D := {s ∈ lC, |Im(s)| < δ, δ > 0}

of the complex s-plane. Since D is mapped onto the unit disk |z| < 1 by the
conformal map

s �−→ z = tanh
(
π

4
s

δ

)
(16)

the motion may be represented by Taylor series convergent for all positive and
negative times.
Since, in a way, these series constitute the solution of the three-body problem,

K.F. Sundman was awarded the prize the French Academy of Sciences had issued
for solving the problem of three bodies. However, beautiful as Sundman’s result
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may be, it is of little practical use since the series converge extremely slowly and
suffer from catastrophic cancellation for large |t|.

(d) The three-body problem in lR3 with C = 0

Theorem 3 states that C = 0 is a necessary condition for a triple collision in the
three-body problem. C = 0, however, is not sufficient. On the other hand, we
have

Theorem 4. The three-body problem with C = 0 is planar, i.e. the motion takes
place in a fixed plane.

Proof. Assume that at time t = t0 all position vectors xj and velocity vec-
tors pj(j = 1, 2, 3) are coplanar. Use a rectangular coordinate system with
the third axis perpendicular to this plane, such that x

(3)
j (t0) = p

(3)
j (t0) = 0,

(j = 1, 2, 3). The equations of motion (3) imply x
(3)
j (t) = p

(3)
j (t) = 0

(j = 1, 2, 3) for all times t. ⊥
There remains to be shown that C = 0 at time t0 implies coplanarity of the

initial vectors xj = xj(t0), pj = pj(t0), (j = 1, 2, 3).

Lemma 1. Let mj > 0, and xj ∈ lR3, pj ∈ lR3, (j = 1, 2, 3) be column vectors
such that

3∑
j=1

mj xj = 0,
3∑
j=1

pj = 0, C :=
3∑
j=1

xj ∗ pj = 0 . (17)

Then the vectors xj , pj are coplanar.

Proof. Choose x1, x2, p1 ∈ lR3. Using (171) and (172) the condition (173) reads

C = x1 ∗ p1 + x2 ∗ p2 + 1
m3

(m1x1 +m2x2) ∗ (p1 + p2) = 0 .

With the abbreviations

u := x1

(
1 + m1

m3

)
+ x2

m2

m3
, v := x1 dism1

m3
+ x2

(
1 + m2

m3

)
∈ lR3 (18)

this may be written as the following system of linear equations for determining
the column vector p2:

S(v) p2 = −S(u) p1 . (19)

Here S(v) is the skew-symmetric matrix

S(v) :=




0 −v3 v2

v3 0 −v1
−v2 v1 0


 = −(S(v))T

converting the vector product v ∗ p into the matrix product S(v)p. S(v) has
the property S(v) v = 0; therefore S(v) is a singular matrix, det(S(v)) = 0. The
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necessary and sufficient condition for the existence of solutions p2 to the singular
system (19) of linear equations is obtained by multiplying (19) by vT :

vT S(u) p1 = 0 or det(v, u, p1) = 0 .

Therefore the vectors v, u, p1 are coplanar. Together with (18) this implies copla-
narity of the vectors p1, x1, x2. Coplanarity of p2, x1, x2 is shown analogously. ⊥

2 Triple collision

Simple and explicit examples of three-body motion leading to triple collision are
the so-called homothetic solutions. These, in turn, are intimately connected
with the homogeneity properties discussed in Section 1.1.

2.1 Homographic and homothetic solutions

Definition. A solution of (3) of the form

xj(t) = r(t) ·Ω(t) · ξj ∈ lR3, j = 1, . . . , N , (20)

where Ω(t) is an orthogonal 3-by-3 matrix, (Ω(t))T Ω(t) = Id, is called homo-
graphic. In particular, if Ω(t) = Id, the solution (20) is called homothetic.


Substitution of (20) into the equations of motion (3) yields, by using (9),

mj
d2

dt2
(
r(t)Ω(t)

)
ξj = r(t)−2 Ω(t)Uξj (ξ) , (21)

from where conditions on the rotation matrix Ω(t), the radial factor r(t), and
the configuration ξ = (ξ1; ξ2; . . . ; ξN ) may be derived. There follows immediately
that the configuration ξ must satisfy

Uξj = −µmj ξj (22)

for every j with an appropriate factor µ independent of j. Configurations with
this property are called central configurations (see Section 2.2).
The most subtle aspect is the determination of the rotation matrix Ω(t). Its

behaviour is governed by the following rather deep theorem.

Theorem 5. The matrix Ω(t) describes a rotation with a fixed axis.

Proof. See, e.g., Wintner [31], §372 - §374 bis (p. 288 - 292). The length of the
proof in this book known for its highly concentrated style illustrates the depth
of Theorem 5. In fact, for non-Newtonian central forces homographic solutions
can “tumble”. At the end of the long proof Wintner writes (§374 bis):
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“One might think the preceding proof is unnecessarily
complicated; in fact, it seems plausible that the theorem
is a direct consequence of the homogeneity of the force
function U and the conservation of angular momentum.
Such is, however, not the case.” ⊥

Based on Theorem 5 the radial factor r(t) follows easily from (21):

Corollary 1. Let z(t) := r(t)Ω(t) ζ, where ζ ∈ lR3 is a fixed vector, then z(t)
satisfies the differential equation of Kepler motion,

z̈(t) = −µ z(t)
|z(t)|3 . (23)

In summary, in homographic solutions the N particles move on synchronized
Keplerian orbits in a fixed plane such that the configuration remains similar
to itself. Figs. 1 and 2 show the two types of elliptic homographic motion of
N = 3 bodies generated by the two possible central configurations: an equilateral
triangle (Lagrange) and a collinear arrangement (Euler).
Homothetic solutions are particular homographic solutions with no rotation,

i.e. the Kepler motion (23) is rectilinear. Therefore every homothetic solution of
the N -body problem (N ≥ 2) leads to simultaneous collisions of all N bodies.

2.2 Central configurations

In this section the algebraic problem of condition (22) will be discussed, roughly
following [31], see also [19].
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Definition. ξj ∈ lRd(j = 1, . . . , N, d ≥ 1) is called a central configuration
with respect to the masses mj > 0 if

∑N
j=1 mjξj = 0 and there exists a constant

µ such that
Uξj = −µmj ξj , j = 1, . . . , N . (24)

⊥

Multiplication of (24j) by ξj and summation over j yields, together with
Theorem 1 and Eq. (12 ):

µ =
U

I
, (25)

i.e. µ > 0 is a free parameter which determines the size of the configuration ξ.
Substituting (25) into (24 ) shows that a central configuration satisfies

∂

∂ξj
(U2 I) = 0, j = 1, . . . , N . (26)

One way of deriving necessary and sufficient conditions is to parameterize the
configuration by the mutual distances rjk := |ξj− ξk|. These distances may have
to satisfy certain constraints which make sure the rjk are the mutual distances
between N points of lRd. The force function U is naturally expressed in terms
of rjk by Eq. (2). Surprisingly, the same can be done for I as follows. Consider
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mI and use algebraic identities:

mI − 0 = (m1 +m2 + . . .+mN )(m1 ξ
2
1 + . . .+mN ξ2N ) −

(m1 ξ1 + . . .+mN ξN )2

=
∑
j<k

mjmk (ξj − ξk)2 =
∑
j<k

mjmk |ξj − ξk|2 .

In view of this and Eq. (26) we have

Theorem 6. Let mj > 0, (j = 1, . . . , N) and

U(ξ) =
∑

1≤j<k≤N

mjmk

|ξj − ξk| , ξ = (ξ1; . . . ; ξN ) ∈ lRNd

I(ξ) = 1
m

∑
1≤j<k≤N

mjmk |ξj − ξk|2, m =
N∑
j=1

mj .
(27)

Necessary and sufficient for ξ to be a central configuration is

δ(U2I) = 0 , (28)

or U2I is stationary under the geometric constraints making sure that

rjk := |ξj − ξk|, 1 ≤ j < k ≤ N

are the N(N − 1)/2 mutual distances of N distinct points of lRd.

Using the geometric constraints asks for the technique of Lagrange multipli-
ers. An alternative is to normalize the size of the configuration and to describe it
by parameters ρ1, ρ2, . . . , ρf , where f is the number of degrees of freedom, such
that the geometric constraints are automatically satisfied. Since condition (28)
is invariant under non-degenerate coordinate transformations, it now becomes

∂

∂ρk
(U2I) = 0, k = 1, . . . , f . (29)

Examples. (i) No constraints, e.g., N = 3 points of lR2, the 3 distances
r12, r23, r13 may be chosen independently.

We have
U = m1 m2 r

−1
12 +m2 m3 r

−1
23 +m1 m3 r

−1
13 ,

mI = m1 m2 r
2
12 +m2 m3 r

2
23 +m1 m3 r

2
13,

and (28) yields

∂

∂rjk
(U2 ·mI) = U2 · 2mj mk rjk + 2U

(
− mj mk

r2jk

)
·mI = 0 .
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There follows
r3jk =

mI

U
, 1 ≤ j < k ≤ N , (30)

i.e. all three mutual distances are equal. For N = 3 the central configuration
is the Lagrangean configuration of an equilateral triangle (even for unequal
masses!).
The same reasoning applies for N = 2 points of the line lR1: the central con-

figuration consists of two distinct points of R1, the “one-dimensional equilateral
simplex”.
Analogously, we may have N = 4 points of lR3 and 6 independent mutual

distances. According to Eq. (30) the central configuration for any set of masses
is the regular tetrahedron.

(ii) N = 3 points of lR1, the collinear (Eulerian) configuration of three masses
m1,m2,m3. Three different central configurations are possible according as m1,
m2, or m3 is the inner mass. We consider the arrangement (m1,m2,m3), nor-
malize the configuration by r23 = 1 and introduce ρ := r12 > 0 as (the only)
independent parameter. With r13 = ρ+ 1 we obtain

mI = m1 m2 ρ
2 +m1 m3(ρ+ 1)2 +m2 m3,

U =
m1 m2

ρ
+

m1 m3

ρ+ 1
+m2 m3 .

Eq. (29) now becomes d(U2 ·mI)/dρ = 0; it leads to the well-known 5th-degree
equation for ρ, which may be written in matrix form as

(m1 m2 m3)

0 0 0 −3 −3 −1
1 2 1 −1 −2 −1
1 3 3 0 0 0






ρ5

ρ4

ρ3

ρ2

ρ
1



= 0 . (31)

It may be shown that for mj > 0 Eq. (31) has exactly one real solution ρ with
0 < ρ < 1. Clearly, the inner mass m2 plays a distinguished role, whereas the
interchange of m1 and m3 corresponds to replacing ρ with 1/ρ, as may also be
deduced from geometric considerations.

2.3 Triple collision, Siegel’s series

In view of the remark at the end of Section 2.1 it is natural to look at phase
space near homothetic solutions in order to describe triple collisions. We will
concentrate on the problem of N = 3 bodies in the plane lR2 (see Theorems 3
and 4). The basic plan is to use a simple homothetic solution as a reference and
study nearby solutions by linearization techniques.
As our reference solution we choose

x0j (t) := c · t 2
3 · ξj , j = 1, 2, 3, ξj ∈ lR2 , (32)
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where ξ is a Lagrangean or an Eulerian central configuration, and c := (4.5µ)
1
3 ,

[21]. A convenient choice is µ := m = m1+m2+m3 which normalizes the central
configurations in a natural way. Eq. (32) corresponds to choosing z(t) of Eq. (23)
as the rectilinear parabolic Kepler motion.
In order to take advantage of the center-of-mass integrals we first rewrite the

equations of motion (3) in terms of relative coordinates y1, y2 with respect to
x3:

y1 := x1 − x3, y2 := x2 − x3, y :=
(
y1
y2

)
∈ lR4 .

The transformed equations of motion are of the form

ÿ = f(y) (33)

where

f(y) = −
[
(m1 +m3) y1 r−31 +m2 y2 r

−3
2 +m2(y1 − y2) r−312

(m2 +m3) y2 r−32 +m1 y1 r
−3
1 +m1(y2 − y1) r−312

]
(34)

with r1 := |y1|, r2 := |y2|, r12 := |y1 − y2|. The vector-valued function f is
homogeneous of degree -2, i.e.

f(εy) = ε−2 f(y) . (35)

Let therefore

y0(t) := c t
2
3

( ξ1 − ξ3
ξ2 − ξ3

)
(36)

be our reference solution; we investigate the family of nearly solutions y(t) =
y0(t)+η(t), where η(t) is a sufficiently small perturbation. In first order η satisfies
the variational equation of (33) with respect to the reference y0:

η̈(t) = t−2 J0 · η(t) , (37)

where J0 ∈ lR4×4 is a constant matrix obtained by substituting the central
configuration ξj into the Jacobi matrix of (34).
If J0 is diagonalizable (37) may be solved in terms of power functions, using

the 4 eigenvectors ek and eigenvalues λk of J0 satisfying

J0 ek = ek λk, k = 1, 2, 3, 4 . (38)

We obtain the 8 particular solutions

η
(1)
k (t) = ek · tµ

(1)
k , η

(2)
k (t) = ek t

µ
(2)
k , k = 1, 2, 3, 4 , (39)

where µ
(1)
k , µ

(2)
k , ordered as µ

(1)
k > µ

(2)
k if real, are the solutions of the quadratic

equation
µ2k − µk − λk = 0, k = 1, 2, 3, 4 . (40)
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By defining Siegel’s exponents αk, βk [13] as

αk := µ
(1)
k −

2
3
, βk := µ

(2)
k −

2
3
, k = 1, 2, 3, 4 (41)

the 8-parameter family of neighbouring solutions of y0(t) may be approximated
by the linear family

y(t) = ct
2
3

[
e1 +

4∑
k=1

ek(ak tαk + bk t
βk)
]
. (42)

Here ak � 1, bk � 1, k = 1, 2, 3, 4 are the parameters of the family. A time
shift in (36) shows that the first eigensystem is given by e1 = (ξ1 − ξ3; ξ2 − ξ3),
λ1 = 4

9 , which implies α1 = 3
2 , β1 = −1.
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Solving the eigenvalue problem (38) and the quadratic equation (40) shows
that 4 Siegel exponents (denoted by α1, α2, β1, β2) are independent of the masses.
These constant exponents are associated with classical constants of motion:

α1 = 2
3 : conservation of energy

α2 = 0 : rotation of the coordinate system

β2 = − 1
3 : conservation of angular momentum

β1 = −1 : invariance with respect to time shift
The 4 variable Siegel exponents α3, α4, β3, β4 are found to be - more or less -
explicit functions of the masses [13,24]. First define the auxiliary parameter κ
as follows:

κ :=




1
m

√
1
2

(
(m1 −m2)2 + (m2 −m3)2 + (m3 −m1)2

) ∈ [0, 1],
Lagrangean case ,

m(m1 u
−3 +m2 u

−3 v−3 +m3 v
−3)

(m1 +m2(u−2 + v−2) +m3)2
∈ [1, 8],

Eulerian case .

(43)

In the Eulerian case u := r12/r13, v := r23/r13 are the ratios of the distances in
the central configuration of the masses (m1,m2,m3); the dependence of κ on the
masses is shown in Fig. 3. Then, the variable Siegel exponents may be expressed
by κ alone as

αk
βk

}
= 1

6

(
− 1±

√
1 + γ(1 + σκ)

)
,

where

γ =

{
12, κ ≤ 1
8, κ > 1

, σ =

{
4− γ

4 , k = 3

−1, k = 4
.

Figure 4 visualizes the dependence of the variable exponents on κ as well as the
fixed Siegel exponents.
Having discussed the range of values of the exponents αk, βk in the linear

family (42), we return to the que stion of describing all solutions in the family
that have a triple collision at t = 0. Clearly, terms with negative exponents
must not be present, e.g. in the Lagrangean case b1 = b2 = b3 = b4 = 0. By
suppressing the term a2 t

0 in (42 ) by means of an appropriate rotation of the
coordinate system, Siegel [13] proved

Theorem 7. If none of the two exponents α1, α3, α4 are commensurable the
solutions with a triple collision at t = 0 may be written as

y(t) = c t
2
3 P (a1 t

2
3 , a3 t

α3 , a4 t
α4) , (44)

where P is a multiple power series convergent for sufficiently small |t| < t0, and
a1, a3, a4 are free parameters.



94 Jörg Waldvogel

Remarks. (i) Eq. (44) holds in the Lagrangean case; in the Eulerian case the
last argument of P is absent.

(ii) If some of the exponents have a rational ratio, logarithmic terms occur, see
[14]. E.g., if α3 = n· 23 , (n ∈ lN) the second argument in (44) is a3 tα3 log t instead
of a3 tα3 .

(iii) If we think of time running backwards, t ↘ 0, to produce a triple collision
at t = 0, there can be no physically meaningful analytic continuation of the
motion for t < 0 since (44) generally yields complex values for t < 0. Therefore,
regularization in the sense of, e.g., Levi-Civita is not possible.

The question about the significance of the negative Siegel exponents (ab-
sent from (44)) arises naturally. The terms of (42) with negative real parts in
the exponents become singular as t → 0; however, they have meaningful lim-
its (namely 0) as t → ∞. Therefore it makes sense to consider the subfamily
a1 = a3 = a4 = 0 as t→∞. All three bodies escape parabolically as t→∞; the
motion is referred to as triple-parabolic escape.

Theorem 8. [25]. If none of the two exponents β2, β3, β4, α4 are commensurable
the triple-parabolic escape solutions may be written as

y(t) = c(t− τ)
2
3 P (b2 t−

1
3 , b3 t

β3 , b4 t
β4 , a4 t

α4) , (45)

where P is a multiple power series convergent for sufficiently large |t| > t0, and
b2, b3, b4, a4 are free parameters. In the Lagrangean case the last argument of P
is absent.

Remarks. (i) In (45) the power series argument b1 t−1 has been suppressed by
shifting the time.

(ii) For κ > 1.125 (Eulerian case only) α4 and β4 are complex, β4 = α4. Since
the corresponding terms of (42) add up to

t
2
3 (a4 tα4 + a4 t

α4) = 2 |a4|
√
t cos

(
ω log

t

t0

)
, ω = Im(a4) ,

the Eulerian triple-parabolic escape may show a slow oscillation growing as
O(
√
t). However, this oscillation is only visible if the leading term of (42) van-

ishes, e.g. in symmetric cases, m1 = m3 [25].

The fact that continuation of an orbit beyond a sharp triple collision is gen-
erally not possible raises the question about the behaviour of three-body motion
at a close triple encounter (not leading to a sharp collision of all bodies) and
beyond.

3 The close triple encounter

For understanding close triple encounters the homogeneity relations (10), (11)
play an essential role [22,23]. If no sharp triple collision occurs the motion un-
dergoes at most binary-collision singularities. By regularization and continuation
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through the singularities the motion may be continued for all times. Therefore,
there must be a minimum size of the system, denoted by ε > 0.
We distinguish two cases: (i) ε is known in advance as, e.g., in the case of a

third body being “shot” into a binary of size ε. Then the scaling transformation
(10), (11) generally transforms the motion into one with no immediate triple
close encounter.

(ii) The three bodies approach their center of mass nearly in a central configu-
ration. Then the three-body system may collapse to arbitrarily small size ε > 0,
where ε is not known in advance. Therefore this case cannot be handled by
predetermined scaling of the variables.

3.1 Singular perturbations

Under the assumption that the motion is a member of the family (42), a system of
8 linear equations will determine the values of the family parameters ak, bk, k =
1, . . . , 4; assume all of them to be small of the order O(ε).
In the following we will sketch a singular-perturbation approach [1] to de-

scribing three-body motion in case (ii), using three phases of the motion [26].
This discussion will lead to a heuristic understanding of close triple encounters;
a rigorous treatment will be sketched in Section 3.2.
Assume therefore that y is a member of the family (42) not leading to a sharp

triple collision, and that all family parameters are proportional to a single small
parameter ε > 0 : ak = O(ε), bk = O(ε), k = 1, . . . , 4. The parabolic collapse
must break up at some scale δ = δ(ε) > 0. In the limit ε→ 0 we obviously must
have δ → 0; it suffices to assume δ(ε) = εσ with an unknown positive exponent
σ > 0.
Rewriting (42) in terms of scaled variables ỹ, t̃, where, according to (10), (11),

y = δ ỹ, t = δ
3
2 t̃, p = δ−

1
2 p̃, H = δ−1 H̃, C = δ

1
2 C̃ , (46)

results in

ỹ = c t̃
2
3

[
e1 +

4∑
k=1

ek(ak δ1.5αk t̃αk + bk delta1.5βk t̃βk)
]
. (47)

Due to ak = O(ε), δ1.5αk = O(ε1.5σαk) the limit ε→ 0 exists if

1 + 3
2
σαk ≥ 0 and 1 + 3

2
σβk ≥ 0 for k = 1, . . . , 4 . (48)

This implies

σ ≤ −2/3
min
k
(Reαk, Re βk)

=
2/3
−β3 ;

hence the largest region for δ(ε) (the “distinguished limit” [1]) is given by σ =
2/(−3β3). In the limit ε→ 0 we then have, as follows from (47) with δ = εσ,

ỹ = c t̃
2
3

[
e1 + e3

b3
ε

t̃ β3 + o(1)
]
. (49)
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For sufficiently large t̃ Eq. (49) constitutes initial conditions for the “inner so-
lution”. If t̃ varies in the full range, −∞ < t̃ < ∞, the inner solution describes
the triple close encounter in terms of the scaled variables t̃, ỹ. This motion is
the particular solution of the three-body problem under consideration given by
the initial conditions (49), to be satisfied asymptotically as t̃→ −∞. In view of
(464) and (465) this motion satisfies H̃ = 0, but generally C̃ 
= 0.
The behaviour after the close encounter is determined by the final evolution

of the inner solution as t̃ → +∞. According to Chazy [2] the “allure finale”
of zero-energy three-body motion (H̃ = 0) can be hyperbolic-elliptic expansion
or triple parabolic expansion. In the generic first case one of the bodies, me,
e ∈ (1, 2, 3) escapes with momentum p̃e < ∞, whereas the other two bodies
form a binary escaping to the opposite side. Transforming back according to
(463) yields

pe = δ−
1
2 p̃e ,

i.e. the momentum of the escaping body can be arbitrarily large, whereas the
other two bodies form an arbitrarily tight binary after the triple close encounter.
The case of the inner solution ending in parabolic expansion as t̃ → ∞ has

measure zero within the family (49). The corresponding triple close encounter
orbit may be continued by an appropriate triple explosion, generally along a
different central configuration. In contrast to regularization of binary collisions
by analytic continuation this is an example of regularization by surgery [5,16].
Triple close encounters may be visualized in 8-dimensional phase space by

means of invariant manifolds [27] (see Fig. 5). Due to α2 = 0 there is a 1-
dimensional center manifold C1 in the form of a circle corresponding to the
rotational invariance of the problem. The incoming orbits or collision orbits (no
exponents < 0) form the center-stable manifold Sd of dimension d = 4 in the
Lagrangean case or d = 3 in the Eulerian case; Sd contains C1. In contrast,
the parabolic orbits form the center-unstable manifold Ud (no exponents > 0,
Lagrange: d = 5, Euler: d = 6). Ud contains C1 as well; its orbits behave like
outgoing orbits emerging from points of C1. The phase space trajectory of a
close triple encounter first follows Sd, then transfers to the neighbourhood of
Ud.

3.2 The triple-collision manifold

In this final section we will give an outlook on the concept of the triple-collision
manifold, introduced by McGehee in 1974 [10]. Although McGehee’s original
paper only discusses the 1-dimensional three-body problem it is the key for rig-
orously handling many more complicated cases of multiple-collision singularities.
In the sequel the isosceles triple encounter was discussed by Simó [17], Devaney
[3], and Irigoyen [9]; the general planar triple encounter was tackled by Hulkower
[8], Moeckel [12], and this author [28], [29] = [30], just to mention a few. The
concept of the collision manifold had been anticipated in 1971 by Easton [6]; it
was generalized later by Devaney [4], McGehee [11].
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Fig. 5. Qualitative sketch of the invariant manifolds in phase space lR8

The basic idea is to apply the scaling transformation (46) in the form

xj = r zj , pj = r−
1
2 uj ; dt = r

3
2 ds, j = 1, 2, 3 (50)

to the equations of motion (3), where the scaling factor r is the variable quantity
satisfying

r2 = I =
3∑
k=1

mk |xk|2 , (51)

i.e. r is the radius of inertia of the three-body system. From (503) there follows
the differentiation rule d/dt = r−3/2 · d/ds. By denoting differentiations with
respect to the new independent variable s by primes we obtain from (51):

r′ = r ·
3∑
k=1

zk uk . (52)

Furthermore, the equations of motion (3) are transformed into

z′j = −zj
3∑
k=1

zk uk +
uj
mj

,

u′j =
uj
2

3∑
k=1

zk uk +
∂

∂zj
U(z), j = 1, 2, 3 .

(53)

The system (52), (53), together with

t′ = r
3
2 , (54)
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is equivalent to the original equations of motion (3). However, since the new co-
ordinates describe triple collisions in a blown-up fashion, transition into collision
solutions is smooth, and it is possible to describe near-collisions as well.
The reason for this is that the collision solutions, characterized by r = 0,

form an invariant submanifold of the manifold of all solutions, i.e. r = 0 is a
solution of (52). For solutions with r = 0 time does not advance, as follows from
(54). The manifold of the solutions of the reduced system (53) is defined as the
triple-collision manifold T . The flow on T bears no physical reality; it is the
limiting flow of an arbitrarily sharp triple close encounter.
The system (53) admits the integrals

3∑
j=1

mj zj = 0,
3∑
j=1

uj = 0 ,
3∑
j=1

mj z
2
j = 1 . (55)

Transforming the energy and angular momentum integral yields

rH = 1
2

3∑
j=1

u2j
mj
− U(z), C r−

1
2 =

3∑
j=1

zj ∗ yj . (56)

Therefore, on T we necessarily have rH = 0 and C = 0, but in general
∑

zj ∗
uj 
= 0. T is imbedded in 12-dimensional phase space. The integrals (55) and
the energy integral rH = 0 in (56) reduce T to a 6-dimensional manifold. Since
the equations (53) are invariant under orthogonal rotations zj �−→ Rzj , uj �−→
Ruj (RT R = Id) a further reduction of the dimensionality may be achieved.
The equilibrium points Ek of the flow on T play an important role since

Ek are the points where the orbits in phase space can approach or leave T . It
may be shown that the points Ek correspond to the central configurations of
the three-body system, where each of them gives rise to two equilibria, one for
collision solutions, the other for explosion solutions.
The phase space orbit of a close encounter solution will therefore approach

T near an equilibrium Ek. Then the orbit remains near T either until it evolves
into a hyperbolic-elliptic escape. This means the projection of the orbit onto T
spirals around pointlike “holes” of T . Alternatively (rarely!), the orbit near T
may approach another equilibrium, E�, and leave the vicinity of T in an inverse
triple collision, a triple explosion.
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13. C.L. Siegel: Der Dreierstoß. Ann. Math. 42 (1941), pp. 127-168.
14. C.L. Siegel: Lectures on the singularities of the three-body problem. Tata Institute,

Bombay (1967).
15. C.L. Siegel, J.K. Moser: Lectures on Celestial Mechanics. Springer (1971), 290 pp.
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Abstract. For deterministic dynamics of a finite number of interacting bodies, colli-
sions are brief events sensitive to initial conditions. They may contribute to the chaotic
evolution of the system at microscopic scale.

The limit of N → ∞ bodies requires a different formulation, kinetic theory, in
which the dynamics leads to the BBGKY hierarchy. Two limits enable one to reduce the
hierarchy to a single partial differential equation for a one-particle distribution function,
respectively the Vlasov equation and the Boltzmann equation. In the mean-field limit,
individual binary interactions are negligible. To the contrary, in the Boltzmann–Grad
limit, individual collisions are crucial and invite to a stochastic description of particle
motion.

Recent results provide a better insight on the relaxation to equilibrium for the
Boltzmann equation.

1 Introduction

There are as many ways to solve a problem in mechanics as there are types
of questions in which one is actually interested. In particular the discussion of
collisions takes different forms depending on whether one focuses on few bodies
or many bodies.
As the Newton potential is specially difficult to discuss, results will be quoted

which apply to its repulsive counterpart (Coulomb potential) and to even simpler
interactions such as the hard sphere elastic collisions, which emphasize the short-
time aspect in collisions. We focus on the hamiltonian models of interacting
identical bodies. The case of a small body in the field of large ones has also been
much studied, and its prototype is the Lorentz gas with hard elastic collisions
[3,5].
The results summarized in this contribution are discussed more thoroughly in

the textbooks by Balescu [2], Dorfman [3] and Spohn [5]. More recent advances
in the theory of kinetic equations are drawn from Villani’s works [6,7]. Though
an accurate (i.e. correct) formulation of the results must be quite mathematical,
the author would prefer the reader to focus on the essence of the statements
rather than on technical issues.

2 N -body dynamics

The dynamics for N bodies (or particles in this contribution) is formulated
in phase space Γ = γN . Each body (labeled 1 ≤ j ≤ N) is described as a

D. Benest and C. Froeschlé (Eds.): LNP 590, pp. 101–113, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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‘structureless point’, with position qj ∈ Λ ⊂ IRd (with d = 3 usually) and
momentum pj ∈ IRd, so that each particle is represented by a point in Boltz-
mann’s µ-space γ = Λ × IRd and the full state of the system at any time t is
x = (q1, p1, . . . qN , pN ). The equations of motion are first-order ordinary differ-
ential equations

ẋ = w(x) (1)

where the vector field w : Γ → IR2Nd describes both velocities q̇j and forces
ṗj . In the familiar hamiltonian case of N identical bodies of mass m interacting
through a pair potential U , the vector field w derives from a hamiltonian

H : Γ → IR : x �→ H(x) =
∑
j

|pj |2
2m

+
1
2

∑
i�=j

U(qi − qj) (2)

generating the equations of motion

q̇j = pj/m (3a)

ṗj = −
∑
i�=j
∇qU(qj − qi) (3b)

The first question raised by these equations is the existence of the dynamics,
i.e. whether, given admissible initial data x ∈ Γ at time 0, the system (1) or
(3a-3b) admits a solution in Γ for all times t ≥ 0. This is the Cauchy problem,
and the possibility of collisions (qi = qj for some 1 ≤ i �= j ≤ N) may be a
difficulty. The trouble is obvious if bodies do actually collide, but also for the
accurate computation of their motion if near-collisions occur, as discussed in
other contributions in this volume.
Repelling forces can be controlled by requiring total energy to be finite.

The finiteness of the force itself can be controlled by considering a short-range
interaction (decaying fast enough for |q| → ∞) and ensuring that there are not
too many particles in a finite-size domain. The uniqueness of the solutions is
ensured by a smooth enough potential. Technically, one proves e.g. (see Spohn
[5], p. 12) that, for N →∞ in an infinite domain Λ, the Cauchy problem admits
a solution for all times for almost any initial data if U is either (i) the hard
sphere potential or (ii) a three times continuously differentiable, finite range,
superstable potential.
Though gravitation fails to meet these requirements, the study of potentials

fulfilling them is interesting and may help in discussing the gravitational case
by means of approximations.

3 Invariants, approximate motion and collisions

Integrating the equations of motion (3a-3b) means finding the flow Θt: γN →
γN : x(0) �→ x(t) for all times t. This is generally too demanding, and one
develops insight by finding special solutions (such as stationary states or periodic
solutions) and reducing the domain in which a solution may wander.
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In this respect, first integrals are crucial. Their conservation reduces the
dimension of the manifold accessible to each solution, and they provide tests
for the accuracy of the numerical integration of the trajectories. In the extreme
case of integrable dynamics, their use reduces the integration of the motion
to a mere sequence of changes of variable from (qj , pj) to action-angle variables
(Ii, ϕi), along with integrating the free evolution of the angles in the form ϕi(t) =
ϕi(0) +Ωi(I)t.
Integrable systems are exceptions, and one usually resorts to approximations.

Almost-invariants may often be identified, taking advantage from the fact that
typically the right-hand side of (3b) for a given particle j may be small over
some long times and be significantly large for short ‘bursts’. Such strong-force
events are the collisions. The central idea is the separation of two scales:

1. the ‘long’ time scale, over which a body moves essentially freely over a large
distance, with almost constant momentum, and

2. the ‘short’ time scale, over which a body suffers a significant impulse, with
little change in its position.

Whereas the duration of a collision is controlled by the interaction dynamics,
the intercollision time is controlled by the spatial density of the bodies, their
typical velocity and the range of the interaction. In this respect, collisions and
free motion are best disentangled in a ‘dilute’ system.
For short-range forces, the collisions may involve only two bodies at a time, if

the bodies do not bind in binary systems. This is a major simplification, and one
may then describe each collision quite accurately, as a mapping from incoming
(q1, p1, q2, p2) to outgoing (q′1, p

′
1, q
′
2, p
′
2). This applies rigorously to elastic hard

spheres, but also reasonably to smoother interactions, including attractive ones
(if no binaries are formed).
It must also be noted that generally dynamics in many-body systems is

chaotic [2,3]. Therefore, small errors on initial data will grow in time, and the
characteristic rate for their exponential growth defines the Lyapunov exponents.
Considering two initial conditions, close to each other, say x(0) and x(0)+δx(0),
the dynamics evolves two trajectories x(t) and x(t)+ δx(t), and the largest Lya-
punov exponent associated to the trajectory x(t) is

λ(x(0)) = lim
t→∞ lim sup|δx(0)|→0

1
t
ln
|δx(t)|
|δx(0)| (4)

where the limit with respect to δx(0) accounts for the fact that the infinitesimal
initial perturbation may be in any direction in phase space. It is easily shown
that λ(x(0)) = λ(x(t0)) for any t0, i.e. the largest exponent does not depend on
the specific initial time from which one integrates the motion, but it generally
depends on the trajectory itself.
Chaos on the infinitesimal scale manifests itself by λ(x(0)) > 0. It may

happen that λ be independent of the trajectory too ; this is discussed in the
context of ergodic theory.
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The chaoticity of dynamics invites one to investigate not just the fate of
the trajectory emanating from a single initial condition, but also the fate of
nearby trajectories. This is one motivation for a statistical physics approach to
many-body dynamics.

4 Collisions and Lyapunov exponents

Two-body collisions between bodies with spherical symmetry (interacting by a
central potential) conserve the two bodies (hence total mass), total momentum,
total energy and total angular momentum. Assuming that the interaction poten-
tial and force vanish (or are negligible) when bodies are far enough, the outgoing
momenta are obtained from the incoming ones using only the relative velocity
u = (p2 − p1)/m and the impact parameter b = |J |/|mu| where J is the orbital
momentum (in the center-of-mass reference frame).
For a system with collisions, the free-motion intervals as well as the collision

events contribute to the separation of trajectories. During the free motion, the
trajectories do not diverge exponentially from each other but only linearly in
time: (

δqj(t)
δpj(t)

)
=
(
1 t
0 1

)
·
(
δqj(0)
δpj(0)

)
(5)

On the other hand, ‘impulsive’ collisions do not change the positions significantly
and thus do not enhance the separation of trajectories in the position space, but
they strongly affect the momentum components. It is the succession of these
events, coupled with the linear increase of separation in free motion, which ul-
timately causes the average exponential separation of trajectories measured by
the positive Lyapunov exponent.
The momentum part of the collision equations reads1

p′1 =
1
2
(p1 + p2 +mu′) = p1 +

m

2
(u′ − u) (6a)

p′2 =
1
2
(p1 + p2 −mu′) = p2 − m

2
(u′ − u) (6b)

where the post-collision asymptotic relative velocity u′ is in the plane of b and
u, and |u′| = |u|. The collision is just a deflection of the relative velocity, with
an angle θ which depends on b, on |u| and on the specific interaction potential.
For technical purposes, it may be convenient to parametrize the collision by
(|u|, ω) rather than by (u, b), where ω is the unit vector in the direction of
closest approach (given by u′−u). As the collision map is not linear, its jacobian
matrix C is not constant and, in general, it may have an eigenvalue with modulus
larger than 1.
1 This system must be completed by equations for the positions, notably for the out-
going impact parameter b′, which also satisfies |b′| = |b| and b′ coplanar with b and
u.
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The long time evolution of the small perturbations to a trajectory is thus
represented by expressions like

δx(t) =
∂x(t)
∂x(0)

· δx(0) = ∂Θt(x(0))
∂x(0)

· δx(0) (7)

=
(
1 t− t′
0 1

)
· C(t′) ·

(
1 t′ − t′′
0 1

)
. . . δx(0) (8)

where the 2Nd × 2Nd-dimensional jacobian matrices C describe the successive
collisions. In general, these matrices do not commute with each other, nor do they
commute with the free motion matrices. The resulting product ∂Θt(x(0))/∂x(0)
is likely to have some eigenvalues with modulus larger than one, and one may
try to estimate the largest one in the limit N → ∞, t → ∞ using a (noncom-
mutative) central limit theorem for random matrices. But such a central limit
theorem requires that successive collisions be (almost) independent, which is a
very strong assumption: once two bodies have interacted, knowledge of the past
motion of one of them provides information on the motion of the other one ;
hence the two motions are not independent. Therefore one must argue that suc-
cessive collisions will involve new partners, and the sensitivity of the collision
outcome to small perturbations may help to decrease the correlation in time
between the bodies [2,3].
In the case of hard spheres, one can discuss the separation of nearby tra-

jectories using geometrical optics (see Dorfman [3], ch. 18): the instantaneous
collision reflects the colliding body in the same way as a spherical mirror re-
flecting a light ray, and the free motion between collisions is equivalent to the
free propagation of light. Nearby trajectories may then be considered as a light
front, and the convexity of the spherical mirrors causes the dispersion of the
light front. One can then estimate the largest Lyapunov exponent of the system,
and find it positive indeed.

5 Kinetic theory and BBGKY hierarchy

Kinetic theory is the relevant way to discuss the many-body dynamics in terms
of few-body interactions and motion. The first unknown in the kinetic model is
the actual number N of bodies to evolve in the space γ = Λ× IRd. Then, given
N , the initial microstate x may be considered as a random variable in γN with
a probability density2fN (up to normalisation).
If one is interested in the joint distribution of any n particles in γ, the relevant

probability density on γn is the correlation function

ρn(q1, p1, . . . , qn, pn) =∑∞
k=0

1
k!

∫
γk
fn+k(q1, p1, . . . , qn+k, pn+k)

∏k
s=1 dqn+sdpn+s

(9)

The n-body densities fn and the correlation functions determine each other
uniquely, as fn =

∑∞
k=0

(−1)k
k!

∫
γk
ρn+k.

2 The fN are symmetric, positive and normalized so that ρ0 = 1 in (9).
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The case of independently distributed particles occurs when correlation func-
tions factorize as ρn(q1, p1, . . . , qn, pn) =

∏n
k=1 ρ1(qk, pk). In that case, the num-

ber ν(∆) of particles with position and momentum (q, p) in a domain ∆ ⊂
γ follows a Poisson distribution with expectation N ′ =

∫
∆
ρ1(q, p)dqdp, i.e.

IP (ν(∆) = n) = (N ′n/n!)e−N
′
.

A n-body observable is a function gn : γn → IR, continuous with compact
support (or a limit of such functions). For a statistical state with correlation
functions ρn, one computes the expectation of gn directly as

〈gn〉 = 1
n!

∫
γn
gnρn

n∏
s=1

dqsdps (10)

The evolution equations (3a-3b) are easily translated into evolution equations
for the n-particle distribution functions and correlation functions. The results
are the n-body Liouville equations for the fn and the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy for the ρn. The latter reads formally

∂tρn − Lnρn = Cn,n+1ρn+1 (11)

with the collision integral taking the form

C1,2ρ2 =
∫
γ

δ(|Q| − a) Q · P
m

ρ2(q1, p1, q1 +Q, p1 + P )dQdP (12)

in the case of elastic hard spheres with diameter a. In this hierarchy,

Lnρn = − p

m
· ∇qρn (13)

is the free motion (streaming) operator, describing noninteracting particles. The
system of equations (11) is a hierarchy, as it expresses the evolution of the n-
th function ρn in the sequence of correlation function in terms of ρn+1, the
next function of this sequence ; hence, the determination of one ρk is intimately
related with the determination of all ρn, n ≥ 1.
The free motion is integrable. A vanishing right-hand side in (11) yields

ρn(q1, p1, . . . qn, pn, t) = eLntρn(q1, p1, . . . qn, pn, 0)
= ρn

(
q1 − (p1/m)t, p1, . . . qn − (pn/m)t, pn, 0

)
(14)

Introducing the free streaming operator Sn(t) = eLnt into the original system
(11), the BBGKY hierarchy is formally solved by the collision expansion

ρn(t) = Sn(t)ρn(0) +
∫ t

0
Sn(t− t′)Cn,n+1ρn+1(t′)dt′ (15)

= Sn(t)ρn(0) +
∫ t

0
Sn(t− t′)Cn,n+1ρn+1(0)dt′

+
∫ t

0

∫ t′

0
Sn(t− t′)Cn,n+1Sn+1(t′ − t′′)Cn+1,n+2ρn+2(0)dt′′dt′

+ . . . (16)



Dynamical and Kinetic Aspects of Collisions 107

However, extracting the long-time evolution of correlation functions from this
expansion is awkward. Two simplifying approximations have been fruitfully in-
vestigated, the mean-field limit for long-range interactions and the Boltzmann–
Grad limit for short-range interactions.

6 Mean-field limit and Vlasov equation

The mean field limit, or the weak coupling limit, is appropriate if the interaction
is long range. Such interactions are best modeled by hamiltonians in the form

HN (q, p) =
∑
j

|pj |2
2m

+
1
2N

∑
i�=j

U(qi − qj) (17)

where the coupling constant is scaled by N to ensure that the energy is extensive
in the limit N →∞ and that the contribution of each individual particle to the
total force is small in this limit. In the limit N →∞, the one-particle correlation
function describing the microstate of the system may converge to a (hopefully
smooth) distribution on γ,

ρ1(q, p) =
1
N

N∑
j=1

δ(qj − q)δ(pj − p) −→
N →∞

ρ∗1(q, p) (18)

The space of finite measures on γ, denoted by L1(γ), is endowed with a norm
|.| called the bounded Lipschitz norm3. One expects the distribution to obey a
kinetic equation, and this is well proved if the interaction is not too singular (see
e.g. Spohn [5], ch. 5):
Theorem: If ∇qU is bounded and Lipschitz continuous, then

1. For any initial measure ρ1(x, 0) in L1(γ), the Vlasov equation

∂tρ1(q, p, t) +
p

m
· ∇qρ1(q, p, t) + E1(q, t) · ∇pρ1(q, p, t) = 0 (19)

coupled with the self-consistent mean field

E1(q, t) = −
∫
γ

[∇qU(q − q′)]ρ1(q′, p′, t)dq′dp′ (20)

has a unique solution in L1(γ) for all times t ≥ 0.
2. Consider two solutions ρ1(q, p, t), σ1(q, p, t) of the Vlasov equation (each with

its associated field evolution). Then

|ρ1(., ., t)− σ1(., ., t)| ≤ ect|ρ1(., ., 0)− σ1(., ., 0)| (21)

for some constant c (independent of ρ1 and σ1).
3 This norm is defined in terms of the observables on γ [5].
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The constant c depends only on the form of the potential U and is related
to two constants B and L which occur naturally. Here, B is an upper bound on
the actual force acting on any particle at any time (|∇qU | ≤ B), and L is an
upper bound on any force gradient (Lipschitz continuity: |∇qU(q)−∇qU(q′)| ≤
L|q − q′|). A hint to the theorem is the fact that the Lyapunov exponents for
the trajectories of the N -body problem may be estimated from the relation

(
δq̇
δṗ

)
=
(
0 1/m
∼ L 0

)
·
(
δq
δp

)
(22)

independently of N . Then one also notes that increasing the number of particles
in the system for the mean-field limit does not change the force on each particle
very much, because each of them contributes only with a factor 1/N to the
total force (one may interpret (18) as an application of the Riemann integral).
Thus, considering more particles does not dramatically affect the dynamics in
the system, and the existence of the finite-N dynamics leads to the solution of
the limiting kinetic equation.
One further shows that, under natural hypotheses for the initial data, the

correlation functions are factorized in the weak coupling limit as N →∞. This
validates rigorously the use of test particles in the field E1(q, t) to follow the
actual motion of typical particles. It is also clear that the kinetic equation pro-
vides a correct description of the many-body system, and integrating the partial
differential equation (19) coupled with the integral field equation (20) provides
a reasonable alternative to the full dynamics of the N -body system.
However, the mean-field kinetic limit theorem above has two drawbacks.

First, the exponential estimate (21) allows for a rather fast deterioration of the
accuracy η on the distribution ρ1. If ηt < ectη0, then η0 > e−ctηt ; to be on the
safe side and to ensure ηt at time t, one will require an initial accuracy e−ctηt,
which goes to 0 exponentially for increasing t.
In other words, given an initial accuracy η0, an accuracy ηt can be ensured

only for times t ≤ c−1 ln ηt
η0
. As good representations of distributions by a finite

number of points yield η0 ∼ N−1, the computations of finite-N evolution and
the Vlasov kinetic evolution may agree (within given ηt) only over rather short
(increasing only as lnN) time scales.
The second drawback relates to the collisionless nature of the Vlasov equa-

tion. In γ space, it is naturally interpreted as a transport equation for the distri-
bution ρ1, i.e. the latter is convected by the vector field (p/m,E1(q, t)). It turns
out that the latter is conservative, i.e.

div(q,p)(p/m,E1) = ∇q · (p/m) +∇p · E1(q, t) = 0 (23)

Consider now the γ-space domain below a given level α for the density ρ1,
i.e. A(α, t) = {(q, p) : ρ1(q, p, t) < α}: one shows that d

dtA(α, t) = 0. Sim-
ilarly, the functional H(ρ, t) = ∫

γ
ρ(q, p, t) ln ρ(q, p, t)dqdp and all As(ρ, t) =∫

γ
[ρ(q, p, t)]sdqdp are conserved for all time t. This is surprising in view of the

usual relaxation of the distribution of many bodies to some equilibrium.
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The mathematical solution to this paradox is that the approach to equilib-
rium is described in coarse ways: e.g. one monitors the time evolution of just one
(or a few) smooth observable(s) g. Then it suffices that the actual distribution
ρ, which is not constant, exhibit oscillations on increasingly smaller scales as t
increases: as the smooth g averages off these oscillations, the evolution of ρ will
appear as leading towards equilibrium. This problem of mixing is discussed in
the books by Balescu [2] and Dorfman [3].

7 Vlasov–Poisson equation for Coulomb
and Newton interactions

The Coulomb potential does not satisfy the hypotheses of the previous theorem.
However, a similar result holds [5], so that the Vlasov–Poisson system is a gen-
uine mean-field limit of the N -body dynamics for this interaction too ; Newton
potential and vortex dynamics in a 2-dimensional fluid are also discussed [5].
The long-time evolution of the Vlasov–Poisson system is presently a matter of
debate.
This is somewhat related to the question of the self-force in the dynamics

of point particles: the point particle equation of motion ṗj = F (qj , t) makes
sense only if limq→qj F (q) exists. However, as the Newton force field generated
by particle j diverges like |q − qj |−2 as q → qj , one must define a ‘regular’
limit for the field. A convenient way to bypass the difficulties of the newtonian
short-range singularity is to replace the actual potential by a smoother one, like
Uε(q) = −Gm(|q|2+ε2)−1/2 and let ε→ 0 only after all calculations are finished.
More elaborate approaches may use self-consistent soliton-like solutions to the
kinetic equations, as was done by Appel and Kiessling for the Maxwell equations
[1].
Of interest to astronomy is also the discussion of the relativistic version of the

Vlasov–Poisson system. For this relativistic version, one takes into account the
velocity-momentum relation q̇ = p/

√
m2 + |p|2c−2, which is substituted for p/m

in (19). Then, if one neglects the retardation effects in the field propagation (i.e.
one keeps (20), rather than replace it by a wave equation), the total relativistic
energy reads

H =
∫
γ

(√
m2c4 + p2c2 +

mU(q)
2

)
ρ1(q, p)dpdq

=
∫
γ

√
m2c4 + p2c2ρ1(q, p)dpdq − 1

8πG

∫
IR3
|∇U(q)|2dq (24)

with the self-consistent potential U = mU satisfying the Poisson equation,

∇2U(q) = 4πGm
∫
IR3

ρ1(q, p)dp (25)

where G is the gravitation constant. Glassey and Schaeffer [4] have shown that,
if H < 0 (i.e. if the ‘non-relativistic energy’ H − mc2

∫
γ
ρ1(q, p)dpdq is ‘very
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negative’), then the solutions to (19)-(20) with spherically symmetric initial
conditions do not exist for all times, i.e. the system evolves to a singularity
in a finite time.
Finite-N corrections to the mean-field limit are a difficult chapter of kinetic

theory [2,5]. The dominant correction to the Vlasov–Poisson system is formulated
in terms of the Balescu-Lenard equation. While the Vlasov equation conserves
entropy, the Balescu-Lenard equation admits a H-theorem like the Boltzmann
equation.

8 Boltzmann–Grad limit and Boltzmann equation

For short-range forces and in the low-density limit, the Boltzmann equation has
been proved to yield the correct evolution of the correlation functions over a finite
(unfortunately short) time interval. Its fundamental assumption, the molecu-
lar chaos hypothesis, is to use the Ansatz ρ2(q1, p1, q2, p2) = ρ1(q1, p1)ρ1(q2, p2)
in the BBGKY hierarchy. One may indeed take a set of factorized correlation
functions as initial conditions for the hierarchy, but in general the factorization
does not remain valid after the initial time: Boltzmann’s assumption of propa-
gation of molecular chaos does not hold in general. However, the free streaming
operator does propagate molecular chaos: only the collisions can (and do indeed)
break down the independence between the bodies.
We denote the Maxwell-Boltzmann velocity distribution function by

MT (v) = (2πT/m)−d/2e−m|v|
2/(2T ) (26)

where we set the Boltzmann constant kB = 1.
To control the recollisions (i.e. make their effect negligible in some limit),

Lanford took advantage of the Grad scaling, in which the collision cross section
goes to zero and the density of bodies goes to infinity, while the mean free path
remains fixed. The rescaled correlation functions are rεn = ε2nρn for hard spheres
with rescaled diameter aε = εa. Then (see e.g. Spohn [5], ch. 4)
Theorem: Consider a sequence of initial correlation functions rεn for finite ε
such that

1. there exist C, T, z > 0 such that, for any n > 0, |rεn(q1, p1, . . . qn, pn, 0)| ≤
C
∏n
j=1

(
zMT (pj/m)

)
, and

2. there exist correlation functions rn : γn → IR such that limε→0 r
ε
n(., ., 0) =

rn(., ., 0).

Then

1. there exists a time t0 > 0 such that, for all 0 ≤ t < t0, the rescaled correlations
functions solutions of the BBGKY hierarchy rεn(., ., t) admit limits rn(., ., t) =
limε→0 r

ε
n(., ., t).
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2. Moreover, if initially rn(q1, p1, . . . qn, pn, 0) =
∏n
j=1 r1(qj , pj , 0), then the fac-

torization propagates: rn(q1, p1, . . . qn, pn, t) =
∏
j r1(qj , pj , t), and the one-

particle function satisfies the Boltzmann equation

∂tr1 +
p

m
· ∇qr1 = C1,2(r1r1) (27)

This theorem is encouraging, as it formally provides a rigorous foundation
to the use of the Boltzmann equation in kinetic theory. However, the critical
time t0 is only a fraction of the mean intercollision time τ (about τ/5 for hard
spheres in d = 3 dimensions, and t0 → 0 as d→∞). Larger estimates for t0 have
been achieved for systems which expand in vacuum: particles move away from
each other, and would naturally have fewer collisions in the future. The difficulty
to overcome, in order to increase t0, is not only due to the complexity of the
recollisions to be analysed but also to the mathematical difficulties inherent to
the Boltzmann equation.

9 Entropy dissipation for the Boltzmann equation

Recent progress in the theory of the Boltzmann equation provides estimates on
the rate of approach to equilibrium of its solutions. The results do not extend
to Newton potential (!), but are nevertheless quite instructive.
Let us write the Boltzmann equation for the one-particle density f(q, v, t) =

mρ1(q,mv, t) in the form

(∂t + v · ∇q)f =
∫
IRd

∫
Sd−1

B(v − v∗, ω)(f ′f ′∗ − ff∗)dωdv∗ (28)

where v∗ is the velocity of the collision partner and ω is the direction of the
vector of shortest approach of the particle by its partner4.
Consider for simplicity a collision differential cross section of the form

B(u, ω) = |u|κβ(cos θ) (29)

where u · ω = |u| cos θ ; special cases in d = 3 dimensions are
• κ = −3 for Coulomb potential,
• κ = 0 for Maxwell potential U(q) = C|q|−4,
• κ = 1 for hard spheres (see (12)),
with appropriate functions β.
The local density n, average velocity V and temperature T (if n �= 0) are

n(q, t) =
∫
IRd

f(q, v, t)dv (30)

V (q, t) =
1
n

∫
IRd

vf(q, v, t)dv (31)

T (q, t) =
1
nd

∫
IRd
|v|2f(q, v, t)dv (32)

4 The unit vector ω spans the sphere Sd−1 of unit radius in IRd.
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Define the local instantaneous rate of entropy production

Df (q, t) = 14
∫
IRd

∫
IRd

∫
Sd−1

B(v − v∗, ω)(f ′f ′∗ − ff∗) ln
f ′f ′∗
ff∗

dωdv∗dv (33)

and Boltzmann’s local H function

Hf (q, t) =
∫
IRd

f(q, v, t) ln f(q, v, t)dv (34)

Given a distribution functionM(v) > 0 (normalized by
∫
IRd

Mdv = 1), we define
(minus) the relative entropy of f with respect to M as

Hf |M (q, t) =
∫
IRd

f(q, v, t) ln
f(q, v, t)

n(q, t)M(v)
dv (35)

One shows that Hf |M ≥ 0, and that Hf |M = 0 only if f = nM .
The following theorems [6,7] apply to the spatially homogeneous Boltzmann

equation and are being extended to more complex cases.
Theorem: Let the exponent 0 < κ ≤ 1 in the collision kernel (29). If

∫
Sd−1 β(r ·

ω)dω <∞ for any r ∈ Sd−1, and given the initial distribution function f(q, v, 0)
= f0(v), with density n0, average velocity V0 = 0 and temperature T0, let M be
the corresponding maxwellian distribution, M =MT0 . Then

1. The Boltzmann equation (28) with initial condition f0 has a unique solution
for all time t ≥ 0, and this solution f conserves mass (mn0), momentum
(mV0 = 0) and energy (T0). The solution f also satisfies

∂

∂t
Hf |M = −Df (36)

2. For any t0 > 0, there exist constants K > 0, A > 0 such that ∀t > t0:
f(v, t) ≥ Ke−A|v|

2
.

3. There exist c > 0, C > 0 such that
∫
IRd
|f(v, t)− n0M(v)|dv ≤ Ce−ct.

This theorem ensures that the initial (spatially homogeneous) distribution
function will relax to the maxwellian distributionM having the same invariants,
that the tails of the distribution cannot decay faster than a maxwellian, and
that the approach to the asymptotic maxwellian is exponential.
Furthermore, the evolution to equilibrium is also controlled [7]:

Theorem: If B ≥ 1 and if there exist K > 0, A > 0 such that f0(v) ≥ Ke−A|v|
2
,

with V0 = 0, then for any ε > 1 there exists C ′ > 0 such that the entropy
production rate satisfies Df ≥ C ′(Hf |M )ε.
This additional statement shows that the entropy production rate cannot be

small (i.e. the relaxation cannot proceed arbitrarily slowly) if the distribution
function is far from the equilibrium maxwellian – provided that the differential
cross sections remain large for all u and ω (i.e. ensure a ‘fast’ redistribution of
velocities). The condition B ≥ 1 can be relaxed to deal with κ > 0 (then ε > 0).
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Chaotic Scattering in Planetary Rings

Jean-Marc Petit
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Abstract. The gravitational interaction of two small satellites, on initially close cir-
cular, coplanar orbits leads to a one-parameter family of solutions. When varying the
parameter h of the family, the solution changes continuously on an interval and then
undergoes a sudden change. The set of discontinuities has a Cantor-like structure.

Similar phenomena have been observed in other problems of scattering. Such a
behavior is related to the presence of periodic orbits and homo- and heteroclinic points.
It can be shown that in the vicinity of a homo- or heteroclinic point, one can define a
symbolic dynamics (Moser, 1973).

The large eigenvalue (600) of the satellite problem limits the possibility of numerical
exploration. A model problem, the inclined billiard (Hénon, 1988), was designed with a
tunable eigenvalue, for which the symbolic dynamics can be analytically defined, thus
fully elucidating the structure of the family.

1 Introduction

In the last few years, many studies have been carried out on the chaos in bound
classical hamiltonian systems and powerful methods have been developed and
applied. In contrast, less work has been done on chaos in classical scattering
systems. However, for nearly thirty years, there have been numerical observations
of complicated - chaotic - behavior in continuous scattering problems: classical
models for inelastic molecular scattering (Rankin and Miller 1971, Gottdiener
1975, Fitz and Brumer 1979, Schlier 1983, Noid et al. 1986), satellite encounters
(Petit and Hénon 1986), vortex dynamics (Eckhardt and Aref 1989), potential
scattering (Eckhardt and Jung 1986, Jung and Scholz 1987). But until recently,
this phenomenon had not been studied for itself.

We found this kind of behavior in a simple physical problem: the encounter
of two satellites on close circular orbits around a planet (namely, Saturn). In
section 2, we describe in detail the physical problem and derive the equations
of motion. One would notice that the equations of motion are non integrable
and contain no true singularities. In the same section, we present more precisely
the chaos that appears in our problem: the asymptotic behavior of the system is
discontinuous with respect to the initial parameters. Then, in section 3, we give
some theoretical results on symbolic dynamics and the generality of this kind of
chaotic behaviour. In view of the numerical difficulties which were encountered
in exploring this problem, a simple “model” problem was developped (Hénon
1988) which is just complex enough to exhibit all the features we are interested
in. This model is described in section 4, and we present the derivation of the
associated symbolic dynamics.

D. Benest and C. Froeschlé (Eds.): LNP 590, pp. 114–144, 2002.
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2 Dynamics of planetary rings

2.1 The physical problem

The physical system we consider consists in the planetary rings, more the Saturn
rings. They represent extremely flat structures, with a length of ∼ 6 · 105 km, a
width of ∼ 7 · 104 km and a thickness of ∼ 100 m. Except for some particular
narrow rings, they are almost circular. We are interested in rings of moderate
optical thickness. Thus 2-body interactions are important, but we can neglect
n-body interactions (n ≥ 3).

Hence the model we consider is a particular case of the three body problem
(Fig. 1). Two light bodies M2 and M3 describe initially coplanar and circular
orbits, with slightly different radii (a2 and a3, with |a3 − a2| = ∆a� (a2, a3)),
around a heavy central body M1. Bodies M2 and M3 are initially far apart,
so that their mutual attraction is negligible. However, the inner body has a
slightly larger angular velocity and eventually catches up with the outer body;
the distance from M2 to M3 becomes small and their mutual attraction is no
longer negligible. We shall call this an encounter. For convenience, M1 will be
called the planet and M2, M3 will be called the satellites. The difference between
the radii of the initial circular orbits ∆a will be called the impact parameter.

Analytic approximations of the solution are available in two cases:
(i) When ∆a is sufficiently large, the result of the encounter is only a slight

deflection of M2 and M3 from their previous circular orbits (Fig. 2). These de-
flections can then be obtained by a perturbation theory (Goldreich and Tremaine
1979, 1980).

(ii) When the impact parameter is very small, the interaction of M2 and M3
produces a “horseshoe” motion: M2 and M3 “repel” each other azimutally and
never come in close proximity (Fig. 3). This case can also be treated by a per-
turbation theory (Dermott and Murray 1981, Yoder et al. 1983). It corresponds
to an adiabatic invariant (Henon and Petit 1986).

Between these two asymptotic cases, however, no theory exists, and appar-
ently only a numerical integration of the equations of motion can give the answer.

2.2 Equations of motion

The equations of motion are as follows:

Ẍi =
Gmj(Xj −Xi)

R3
ij

+
Gmk(Xk −Xi)

R3
ik

,

Ÿi =
Gmj(Yj − Yi)

R3
ij

+
Gmk(Yk − Yi)

R3
ik

,

where for i = 1, 2, 3 and i �= j �= k. Rij is the distance between body i and body
j. These equations are not well suited for accurate numerical integration. One
has to compute the difference of large, very close numbers, hence loosing a lot
of significant digits.
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Fig. 1. Plane view of the three body problem defining the notations.

In order to have an accurate numerical study, we first reduce the equations
to a simpler form: the classical set of Hill’s equations. Only a brief review of this
reduction will be given here; details can be found in Hénon and Petit 1986. We
call mi is the mass of body Mi and m = m1 + m2 + m3 the total mass of the
system.

• We assume that the mass of either satellite is small compared to the mass of
the planet:

m2 � m1, m3 � m1. (1)

• We assume also that the distance between the two satellites is small compared
to their distance to the planet. In a zero-order approximation, the two satellites
can then be considered as a single body in orbit around the planet. This orbit
will be called the mean orbit, and will be assumed to be circular.

- We call a0 the radius of the mean orbit. (The precise definition of a0 does
not matter, as long as it is nearly equal to the radii of the satellite orbits).

- The angular velocity on the mean orbit is

ω0 =
√
Gma−30 . (2)
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Fig. 2. Some slightly perturbed orbits for large values of ∆a. The curve represents the
relative motion of one satellite with respect to the other, in Hill’s coordinates (ξ in
abscissa, η in ordinate; see text below for definitions). The first approach is downwards
from η = +∞.

We define the relative mass of this single body

µ =
m2 +m3

m
. (3)

Let Xi, Yi be the coordinates of body i in an inertial system and t the time.
We introduce dimensionless coordinates by

X ′i =
Xi

a0
, Y ′i =

Yi
a0

, m′i =
mi

m
, t′ = ω0t, (4)

and for simplicity we drop the primes in what follows.

• In the new variables, the radius of the orbit, the angular velocity, the mass of
the system, and the gravitational constant are all equal to 1.
• We choose the origin of time so that the two satellites are in the vicinity of
X = 1, Y = 0 at t = 0.
• In a system rotating at angular velocity 1, the two satellites remain close to

point (1, 0) during the encounter.
• We introduce new coordinates ξ, η, which will be called Hill’s coordinates:

Xi −X1 = (1 + µ1/3ξi) cos t− µ1/3ηi sin t,
Yi − Y1 = (1 + µ1/3ξi) sin t− µ1/3ηi cos t, (i = 2, 3) (5)

In the previous derivation, we introduced the small parameters µ1/3ξ and
µ1/3η. We scaled by the factor µ1/3 because we want to have a non-trivial prob-
lem. If the two satellites are far apart, then we have the superposition of two
2-body Keplerian problems. If on the contrary the two satellites are very close,
then we have a 2-body problem, which center of mass is on a Keplerian orbit
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Fig. 3. Same as Fig. 2 but for small ∆a.

around the massive body. But if the gravitational force between the two satel-
lites is similar to the differential force due to the central body, then we cannot
neglect any force term in the equations of motion:

- the distance to the primary is O(1);
- the differential force is then O(R23);
- the gravitational force is O(µ/R2

23);
- we finally have the relation O(R23) ∼ O(µ/R2

23).

Hence:
R23 = O(µ1/3),

from where we obtain the small parameter.
We now consider the motion of the center of mass and the relative motion of

the two satellites. In all what follows, we drop the terms of order µ1/3 or higher.
The position of the center of mass is then:

ξ∗ =
m2ξ2 +m3ξ3
m2 +m3

, η∗ =
m2η2 +m3η3
m2 +m3

,

and it satisfies (approximately) the equations of motion:

ξ̈∗ = 2η̇∗ + 3ξ∗, η̈∗ = −2ξ̇∗.
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These equations are linear and easily integrated as an epicyclic motion (Hénon
and Petit 1986):

xi∗ = D∗1 cos t+D∗2 sin t+D∗3 ,

η∗ = −2D∗1 sin t+ 2D∗2 cos t− 3
2
D∗3t+D∗4 .

The relative position is:

ξ = ξ3 − ξ2, η = η3 − η2,

satisfying (approximately) the Hill’s equations (Hill 1978):

ξ̈ = 2η̇ + 3ξ − ξ

ρ3
, η̈ = −2ξ̇ − η

ρ3
, ρ =

√
ξ2 + η2.

The error in these equations is of order of µ1/3. They become exact in the limit
of vanishing satellite masses. Taking this limit is equivalent to zoom on the two
satellites and the main effect is to repel the planet to infinity and transform
circular orbits in straight lines (fig 4).

The most important points to notice on these equations are:

1. There is no parameter left in the equations (the same equations are valid in
every physical case).

Fig. 4. Relative motion in Hill’s approximation.
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2. As is easily shown, the initial conditions for relative motion of circular orbits
are given by only one parameter: the impact parameter h.

3. Therefore, the set of solutions is a one-parameter family, and it seems reason-
able to try to study it. We can even reduce the study to positive values of h
because of the symmetries of the equations of motion.

Hill’s equations admit the integral

Γ = 3η2 +
2
ρ
− ξ̇2 − η̇2 (6)

which can be called the Jacobi integral by analogy with the restricted problem.
We can write the Jacobi integral in terms of the initial conditions:

Γ =
3
4
h2. (7)

The typical encounter orbits are as shown in fig 5, taken from a collection of
several hundred pictures of the familly 0 < h <∞.

For convenience, we shall think of the special case m2 
 m3, and identify
the origin of the (ξ, η) system with the satellite M2; the curves then simply
represent the motion of M3. An interesting feature is that the third body always
escapes either upward or downward, but never stays close for ever. This is in
agreement with a general result by Marchal (1977) which shows that the set
of “capture orbits” is of zero measure. For a more detailed explanation of the
equation of motion and of the orbits, see Hénon and Petit (1986) and Petit and
Hénon (1986).

To numerically integrate the equations of motion, especially for very small
or vanishing ρ, we used the Levy-Civita regularization. This consists in a new
change of coordinates and time:

z = ξ + i| > η, w = u+ i v,

w2 = z,
∂t

∂τ
= 4|w|2

Then the equations become:

ü− 8(u2 + v2)v̇ =
∂Q∗

∂u
,

v̈ + 8(u2 + v2)u̇ =
∂Q∗

∂v
,

with

Q∗ = 6(u2 + v2)(u2 − v2)2 + 4− 2Γ (u2 + v2),
ξ = u2 − v2, and η = 2uv.

In these new coordinates, the collision orbit becomes a straight line followed at
constant speed.
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Fig. 5. Family of encounter orbits. Each frame corresponds to one particular value
of the reduced impact parameter h. The curve represents the relative motion of one
satellite with respect to the other, in Hill’s coordinate (ξ in abscissa, η in ordinate).
The first approach is downwards from η = +∞.

It is interesting to note the following propoerties:

1. there is no true singularity in the equations of motion: the 1/ρ2 singularity
can be removed by the Levy-Civita regularization;

2. at a given time t, the solution is a continuous function of the impact parameter
h;

3. the orbits are not chaotic.
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2.3 Chaotic scattering

When t→∞ the family exhibits an interesting feature that we call “transitions”.
Roughly speaking, at given values of h, we see a discontinuity in the shape of
the orbit: orbits that used to escape with η < 0 starts to escape with η > 0. This
is the phenomenon that we want to develop now.

Consider an example. When h decreases from large values, the shape of the
orbit changes continuously with h and the third body always escapes downward
(first four plots of Fig. 5). Suddenly, something happens and it escapes upward.
The change (transition) occurs for hmax = 1.718779940. It can be thought of as
a discontinuity of the shape of the orbit.

But we need a more quantitative description of this discontinuity. If we look
at parameters describing the asymptotic motion as functions of h, we see very
sharp variations at values of h corresponding to the changes of escape side.
Especially, consider the final impact parameter h′ (defined from the mean motion
for t→∞). Using the Jacobi integral, it can be shown that |h′| ≥ h. A downward
escape corresponds to h′ > 0 and an upward escape to h′ < 0. Therefore a change
of escape side leads to a change of sign for h′ and a discontinuity of step at least
2h (Fig. 6). This is what we mean by discontinuity. The set of discontinuity
values of h being very complex, we shall speak of “chaotic” behavior of the
familly.

We will now describe rapidly the set of discontinuities. Consider an orbit de-
fined by an arbitrary value h0. Typically, the following happens: when decreasing
h from h0, the orbit changes continuously down to h1 where a discontinuity oc-
curs. We call this a “transition value”. Similarly, if we increase h from h0, we
reach a second transition value h2. The interval between h1 and h2 is called a
“continuity interval”. There are two particular cases: a continuity interval ranges
from hmax to ∞, an other one ranges from 0 to hmin = 1.336117188 (Fig. 7).
Suppose we have localized an interval of continuity. We do it again, starting from
another value h0 out of the range [h1, h2]. We find another interval of continuity
and so on.

Experiment shows that intervals are never contiguous. If one takes a point
in an unexplored interval, one will find a new continuity interval which doesn’t
touch a previous interval neither on the left nor on the right. This gives birth to
two new unexplored intervals. This goes on and on to infinity. This must remind
the reader of the classical definition of the Cantor set. The difference here is that
the intervals are not regularly ordered.

In order to reconcile the continuity of the orbits with the discontinuity of
the asymptotic behavior (h′), the family must go through an orbit with infinite
capture time. This is achieved by having an orbit asymptotic to a periodic orbit
(Fig. 8). For example, the first transition orbit for h = hmax corresponds to a
periodic orbit emanating from the Lagrangian point L2 (Hénon 1969, Fig. 2).
Since the system is Hamiltonian, the periodic orbit is necessarily unstable.

It will be helpful to introduce at this point a surface of section defined for
instance by η = 0 and η̇ > 0: for each crossing of an orbit with the ξ axis in
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Fig. 6. Final impact parameter h′ as a function of the initial impact parameter h. The
region between the two dashed lines is forbidden.

Fig. 7. A Schematic representation of the largest continuity intervals.

the positive direction (η increasing), we plot a point with the coordinates ξ, ξ̇
(Fig. 9). An orbit is then represented by a sequence of points.

On the figure, P represents the periodic orbit. The two real eigenvalues of
this orbit are λ1 = 1/640 and λ2 = 640. The orbit h = hmax falls on the
stable invariant manifold Ws of P and converges exponentially to P : points
(· · · , Y0, Y1, Y2, · · ·). There are orbits tending towards the periodic orbit for t→
−∞: points (· · · , Z−2, Z−1, Z0, · · ·) on the unstable invariant manifold Wu of P .
Note however that for the orbits we are concerned with, we get generally a finite
(small) number of points in the surface of section: three points for the orbit with



124 Jean-Marc Petit

Fig. 8. An orbit of the Satellite Encounter family which is asymptotic to an unstable
periodic orbit.

h = 1.71863 for instance. An orbit can also have no point at all in that surface
(h > 2.4).

Consider now an orbit of our family with h slightly different from hmax, say
larger. The points in the surface of section are slightly beside Ws (crosses on the
picture). They stay close to Ws until they reach the vicinity of P , then they go
away along Wu. An important point is that λ2 is positive. So the points go along
only one branch of Wu. Here, it is the upper right branch. The corresponding
orbits are quite regular. Particularly, they all escape downward and vary contin-
uously when h increases (Fig. 10a). This accounts for the continuity interval for
h > hmax.

For h < hmax, the points escape along the left branch of Wu. The orbits for
h < hmax are shown on Fig. 10b. Sometimes orbits escape upward, some time
downward. So there is no continuity interval on the left of hmax. This explains the
complex structure of the continuity intervals. For h < hmax, instead of escaping
directly, the orbit will first go in the vicinity of an other unstable periodic orbit.
This orbit will itself give birth to a transition phenomenon, that we shall call a
second order transition. In this way, one can construct a hierarchical structure
of transitions of higher and higher order. Suppose we have an orbit going close
to one periodic orbit then close to a second one. By changing h, we can push
the points in the surface of section closer to the first fixed point. Particularly,
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Fig. 9. Sketch of the surface of section. The value of λ1 has been artificially increased
to show the structure more clearly.

one can manage to have the same pattern along Wu and one or more additional
points in the vicinity of P . This corresponds to orbits with the same escape but
with one or more additional turns around the first periodic orbit (Fig. 11). In the
first plot, the orbit follows the periodic orbit during half a turn, in the second
during one and a half and in the third during two and a half (even if this is not
visible on the figure). This gives rise to a geometrical progression of ratio λ1 in
the values of h.

From all our numerical integrations, it seems that only two family of periodic
orbits are involved: family a mentioned above and the symmetrical family b also
described in Hénon 1969.

The necessary ingredients for this kind of behavior is the existence of peri-
odic orbits and heteroclinic or homoclinic points (intersection points of invariant
manifolds of two different or one single periodic orbit). But it is very difficult to
go any further with this problem due to the large value of the eigenvalue (∼ 640).

2.4 Other examples

Other authors have observed similar behavior in other scattering problems: col-
lisions of vortex pairs (Manakov and Shchur, 1982; Eckhardt and Aref, 1989;
Fig. 12), collisions between an atom and a diatom (Gottdiener, 1975; Agmon,
1982; Fig. 13), scattering of a particle by a two-dimensional potential (Jung and
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Fig. 10. (a) Outgoing orbits for h > hmax. (b) Outgoing orbits for h < hmax.

Fig. 11. Three orbits with essentially the same outgoing but different behavior during
the close encounter. The orbit goes along the unstable periodic orbit for half a turn on
the left, for one and a half in the middle and for two and a half on the right plot.
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Fig. 12. Collisions of vortex pairs. Top: Manakov and Shchur, 1982. Bottom: Eckhardt
and Aref, 1987.

Scholz, 1987; Eckhardt and Jung, 1986; Blümel and Smilansky, 1987; Fig. 14)
among others.

3 Symbolic dynamics

In this section, we present very briefly some general results concerning the sym-
bolic dynamics and the effect of homo- and heteroclinic points. In particular,

Fig. 13. Collisions between an atom and a diatom. Top: Gottdiener, 1975. Bottom:
Agmon, 1982.



128 Jean-Marc Petit

a)

b)

c)

Fig. 14. a) Diffusion by a two-dimensional potential. Jung and Scholz, 1987. b) Jung
and Scholz, 1987. c) Blümel and Smilansky, 1987.
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no proof will be given. We refer the readers interested in more mathematical
derivations and proofs to Moser (1973) and references therein.

We consider the topological space S consisting in doubly infinite sequences

s = (· · · , s−2, s−1, s0, s1, s2, · · ·)
with sk ∈ A, a finite or denumerable set which we call the alphabet.

The goal of symbolic dynamics is to relate the orbits of a mapping or of a
dynamical system with the elements of S.

3.1 The Bernoulli shift

On S, we define the mapping σ such that:

(σ(s))k = sk−1.

This mapping is known as the Bernoulli shift.
We consider now the mapping φ on the square Q: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(Fig. 15):

φ :
{
x→ x1 = 2x− [2x],
y → y1 = 1

2 (y + [2x]).

This mapping is known as the Baker’s transform.

Fig. 15. Geometrical definition of the Baker’s transform: the square Q is first stretched
by a factor 2 along the horizontal axis, while compressed by the same factor along the
vertical axis. Then the right half is cut and put atop the left half.

We now want to relate the elements of S to the elements of Q in such a way
that the mapping σ on S corresponds to the mapping φ on Q. Taking A = 0, 1,
we define a mapping τ from S to Q by:

x =
−∞∑
k=0

sk2k−1, y =
+∞∑
k=1

sk2−k.
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One can easily see that we have φ = τστ−1. Geometrically, the two vertical strips
V1 and V2 of Fig. 15 are described by s0 = 0 and 1. They are mapped into the
two horizontal strips U1 and U2, described by s1 = 0 and 1, thus corresponding
to a shift in the sequence s.

Therefore, we can specify arbitrarily if the images and preimages of a point
belong to V1 or V2. σ is then called a subsystem of φ.

3.2 Topological mappings

The properties we just described for the Baker’s transform can be shown to
apply to more general tranforms.

We first need to introduce some definitions. We define, in Q, a horizontal line
y = u(x) by:

0 ≤ u(x) ≤ 1 for 0 ≤ x ≤ 1,

and
|u(x1)− u(x2)| ≤ µ|x1 − x2| for 0 ≤ x1 ≤ x2 ≤ 1

with 0 < µ < 1.
Let u1(x) and u2(x) be two horizontal lines such that 0 ≤ u1(x) < u2(x) ≤ 1.

We call the set

U = {(x, y) | 0 ≤ x ≤ 1; u1(x) ≤ y ≤ u2(x)}
a horizontal strip.

The maximum distance along the vertical axis between the two horizontal
lines,

d(U) = max
0≤x≤1

(u2(x)− u1(x))

is the diameter of U .
Similarly we define vertival lines and strips by exchanging x and y, and

replacing u and U by v and V .
Given these definition, we consider a topological mapping φ such that φ(Q)

intersects Q (Fig. 16).
We assume that this mapping has the following properties:

(1) Ua (respectively Va) are disjoint horizontal (resp. vertival) strips in Q with:

φ(Va) = Ua, a ∈ A.

The vertical boundaries of Va are mapped onto the vertical boundaries of Ua.
(2) If V ∈ ∩a∈AVa, then for any a ∈ A

φ−1(V ) ∩ Va = V ′a

is a vertical strip, and for 0 < ν < 1, we require

d(V ′a) ≤ νd(Va).

It can be shown that if φ satisfies the conditions (1) and (2), then it possesses
σ as a subsystem: there exist τ from S into Q such that

φτ = τσ.
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Fig. 16. Sketch of a general topological mapping φ such that φ(Q) intersects Q twice.
The two vertical strips V1 and V2 are mapped by φ into the horizontal strips U1 and
U2 respectively.

3.3 C1 mappings

We consider now a mapping φ which is C1:

φ :
{
x1 = f(x0, y0),
y1 = g(x0, y0),

where f and g are two C1 functions on Q.
We call dφ its tangent mapping:

dφ :
{
ξ1 = fxξ0 + fyη0,
η1 = gxξ0 + gyη0,

where fx, fy, gx and gy denote the partial derivatives of f and g with respect to
x and y.

Let us define the following condition.

(3) For 0 < µ < 1, we define the bundle of sectors

S+ : |η| ≤ µ|ξ|
over ∪a∈AVa. We assume that

dφ(S+) ⊂ S+.

In addition, if (ξ0, η0) ∈ S+ and (ξ1, η1) is its image, then

|ξ1| ≥ µ−1|ξ0|.
Similarly we define the bundle of sectors S− over ∪a∈AUa, and have the same
properties changing ξ and η.

It can be shown that if φ satisfies the conditions (1) and (3) with 0 < µ < 1/2,
then condition (2) holds with ν = µ/(1− µ).
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3.4 Homoclinic points

We now consider a mapping φ which is C∞. Assume that this mapping has 2
different fixed points, p and q. r is said to be a heteroclinic point if φk(r) → p
for k → −∞ and φk(r)→ q for k → +∞, or vice-versa.

In case the 2 fixed points p and q are not different but coincide, then r is
called a homoclinic point.

In both cases, the following property holds:

r ∈Wu(p) ∪Ws(q).

In what follows, we require that the 2 curves Wu(p) and Ws(q) intersect
transversally. We restrict ourself to the case of homoclinic points, i.e. p and q
coincide, but the results hold for heteroclinic points.

Given the previous conditions, we can construct a small quadrilateral R near
r, homoclinic point, two of its sides consisting of parts of Wu(p) and Ws(p) and
the others being straight line parallel to the tangents of Wu(p) and Ws(p) at r
(Fig. 17).

For any given point q, we call k = k(q) the smallest integer for which φk(q) ∈
R.

We call D(φ′) the set of q ∈ R for which k > 0, and

φ′(q) = φk(q) for q ∈ R.

The following results can be shown:

• In any neighborhood of r, φ′ possesses an invariant subset I homeomorphic
to S via τ : S → I such that

φ′τ = τσ.

• The homoclinic point belonging to p are dense in I.

As a consequence, for a dynamical system with two periodic orbits and a
heteroclinic point or a single periodic orbit with a homoclinic point, there would
be an unnumerable set of initial conditions for which one could define a symbolic
dynamics.

4 The inclined billiard

According to the previous results, it is theoretically possible to define a symbolic
dynamics which is Bernoulli for the three body problem. This gives a better
description of the dynamics of the system. But in our problem, it is difficult to
study the symbolic dynamics because of the large value of the eigenvalues. This
greatly limits the number of scales that we can explore. Hence it is not possible
to explicit the self-similar structure of the values of discontinuity.

So a model problem was designed which is complex enough to exhibit all the
features we are interested in, and simple enough so that all the calculations can
be done analytically. This new model should satisfy the following conditions:
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Fig. 17. Schematic representation of the stable and unstable manifolds Wu(p) and
Ws(q) of a fixed point p, a homoclinic point r, and a small quadrilateral R in its
neighborhood.

• have smaller, and if possible adjustable eigenvalues;
• the equations of motion can be reduced to an explicitly defined mapping, so

that solutions can be computed much faster.

4.1 The model and an interesting limit

This model is the inclined billiard (Hénon, 1988). It is defined as follows: a
particle moves in the (X,Y ) plane and bounces elastically on two fixed disks
with radius r and with their centers in (−1,−r) and (1,−r) respectively. In
addition, it is subjected to a constant acceleration g which pulls it in the negative
Y direction (Fig. 18).

For most initial conditions, after a finite number of rebounds, the particle will
“fall” downwards and never return. This behaviour is equivalent to a departure
phase in Hill’s problem. However, for some particular conditions, the particle can
bounce indefinitely back and forth on one or both disks. A particular instance of
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Fig. 18. The inclined billiard

this behaviour is a periodic orbit. In this problem, the periodic orbits are always
unstable.

To follow the same reasoning path as for Hill’s problem, we define a one-
parameter family. We start the particle at rest at a position given (h, Y0). Y0 is
the constant height from which we drop the particle, h is the variable location
along the horizontal axis, similar to the impact parameter in Hill’s problem.

We describe the family by varying h from −∞ to +∞. The setup of the
system is such that we expect intervals of continuity in h. We also expect tran-
sitions:

- For h = −1, the particle bounces indefinitely on the left disk: this is a periodic
orbit.

- For h < −1, the particle falls to the left and never returns.
- For h > −1, it moves to the right and complex interplays with the 2 disks are

possible.
- A similar periodic orbit exists at h = 1.

The particle being subjected to a constant acceleration, the orbits are piece-
wise parabolae. Hence the problem can in principle be reduced to the study of
an explicit mapping. To do so, we consider the coordinates at rebound. The co-
ordinate of the rebound X and Y are linked by the fact that the rebound takes
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place at the surface of a disk. We keep X as one of our mapping coordinate. The
energy of the particle is fixed and given by the initial conditions. So, another
coordinate can be dropped. We decide to keep W , the transverse component of
the velocity, i.e. the projection of the velocity on the tangent to the disk. W
is invariant in the rebound. So we do not have to specify if it is taken before
or after the rebound. This choice preserves the symmetry of the mapping with
respect to time. Eventhough theoretically possible, the exact calculation of the
mapping is messy. it requires to solve a 4th order equation.

To make the computation affordable, one considers the limit where r is large
and approximates the circles (disks) by parabolas (Fig. 19). The “disks” extend
then from −∞ to ∞ in the X direction and the number of rebounds of the
particle on them is now always infinite. We suppose that Y0 is large.

Fig. 19. The limit of large radii.

In this limit, we can make many simplifying approximations. Y (at the col-
lision point) is small: Y = O(r−1). The vertical velocity V is large. So we can
neglect the vertical thickness of the profile. Only the slope f(X)/r is of conse-
quence:

f(X) =
{
X + 1 for X < 0,
X − 1 for X ≥ 0,

The constant total energy is E = gY + 1
2 (U

2+V 2), where U = Ẋ and V = Ẏ . The
change in U/V = O(1/r), thus, for an interesting mapping, we consider the case
where U/V = O(1/r). The time between rebounds is O(V/g), ther horizontal
distance travelled is O(UV/g). Here again, for an interesting mapping, this is
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O(1). Hence:

UV = O(g), U = O(
√

g

r
), V = O(

√
gr), E = O(gr).

The maximum height reached is Ymax = O(r).
We then derive the mapping. We first introduce some notations. Xj and

Yj are the coordinates of collision number j. Rj and Wj are the radial and
tangential velocity components just after the collision. We define θ as the angle
between the tangent of the disk and the horizontal: tan θ = −f(Xj)/r. We have
θ = O(1/r). The horizontal velocity between rebounds is given by: Uj+1/2 =
WJ cos θ−Rj sin θ. From our previous estimates, we get: Wj = O(

√
g
r ), Rj =√

2E[1 + O(r−2)], Then: Uj+1/2 =
[
Wj +

√
2E
r f(Xj)

]
[1 + O(r−2)]. Calling V ′j

the vertical velocity after collision j, Vj+1 the vertical velocity before collision
j + 1, and T the time between 2 rebounds, we have:

V ′j =
√

2E[1 +O(r−2)], Vj+1 = −
√

2E[1 +O(r−2)],

T =
2
√

2E
g

[1 +O(r−2)].

Thus the mapping is given by:

Xj+1 = Xj +
2
√

2E
g

Uj+1/2[1 +O(r−2)],

Wj+1 =

[
Uj+1/2 +

√
2E
r

f(Xj+1)

]
[1 +O(r−2)].

Taking the limit r → ∞ we finally obtain the mapping from (Xj ,Wj) to
(Xj+1,Wj+1):

Uj+1/2 = Wj +
√

2E
r

f(Xj),

Xj+1 = Xj +
2
√

2E
g

Uj+1/2,

Wj+1 = Uj+1/2 +
√

2E
r

f(Xj+1).

Considering the vicinity of the fixed points X = ±1, W = 0, we introduce:

coshφ = 1 +
4E
gr

, sinhφ =

√
4E
gr

(
2 +

4E
gr

)
,

U = u

√
g

2r

(
2 +

4E
gr

)
,W = w

√
g

2r

(
2 +

4E
gr

)
.
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The mapping in dimensionless form is:

uj+1/2 = wj + f(Xj) tanh
φ

2
,

Xj+1 = Xj + uj+1/2 sinhφ,

wj+1 = uj+1/2 + f(Xj+1) tanh
φ

2
.

φ is the only parameter left. It cannot be eliminated and is related to the
eigenvalues of the fixed points. We therefore have achieved our goal of having
tunable eigenvalues.

The mapping can be written in several forms, which can be useful in the
following. We introduce: xj = f(Xj), sj = sign Xj and xj = Xj−sj . Eliminating
Uj+1/2 from the equations, we get the mapping F :

Xj+1 = Xj coshφ+ wj sinhφ− sj(coshφ− 1),

wj+1 = Xj sinhφ+ wj coshφ− (sj coshφ+ sj+1) tanh
φ

2
.

Equivalently, we can write:

xj+1 = xj coshφ+ wj sinhφ+ (sj − sj+1),

wj+1 = xj sinhφ+ wj coshφ− (sj − sj+1) tanh
φ

2
.

or

xj+1 + wj+1 = eφ(xj + wj) +
2eφ

eφ + 1
(sj − sj+1),

wj+1 − wj+1 = e−φ(xj − wj) +
2e−φ

e−φ + 1
(sj − sj+1).

4.2 Properties of the motion

The inverse mapping F−1:

xj = xj+1 coshφ− wj+1 sinhφ+ (sj+1 − sj),

wj = −xj+1 sinhφ+ wj+1 coshφ− (sj+1 − sj) tanh
φ

2
.

can be obtained from F by changing φ to −φ. This results from the symmetry
with respect to time of the original problem, and from the choice of x and W
which preserves the symmetry.
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Due to the very simple form of F , we obtain the explicit equations for the
iterated mapping Fn:

xn + wn = enφ

{
(x0 + w0)

+
2

eφ + 1

[
s0 − (eφ − 1)

n−1∑
j=1

e−jφsj − e(1−n)φsn

]}
,

xn − wn = e−nφ
{

(x0 − w0)

+
2

e−φ + 1

[
s0 + (1− e−φ)

n−1∑
j=1

ejφsj − e(n−1)φsn

]}
.

A note of caution is in order here about the meaning of the
∑

notation. The
notation:

n∑
j=1

f(j)

can be made valid not only for n > 0, but also for n = 0 and n < 0. The
generalization of

∑
, is done by analogy with integrals:

j=b∑
j=a+1

f(j) =
j=b∑
j=c

f(j)−
j=a∑
j=c

f(j),

where c is an origin satisfying c ≤ min(a, b). This definition gives:

j=b∑
j=a+1

f(j) =



f(a+ 1) + f(a+ 2) + · · ·+ f(b) if b > a
0 if b = a
−f(b+ 1)− f(b+ 2)− · · · − f(a) if b < a

We search the fixed points and note that in this case the rebounds take all
place on the same disk. Hence:

xj+1 = xj coshφ+ wj sinhφ, wj+1 = xj sinhφ+ wj coshφ.

The fixed point is therefore x = w = 0. In the (X,w) plane, this translates in:
{
X = 1, w = 0, s = 1;
X = −1, w = 0, s = −1.

From the previous equations for F , we have:

xj+1 + wj+1 = (xj + wj)eφ, xj+1 − wj+1 = (xj − wj)e−φ,

from which we get the eigenvalues of the fixed points:

λ = eφ, λ−1 = e−φ,
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and the associated eigendirections:

w = x, w = −x.

Thus, the invariant manifolds are straight lines, interrupted at X = 0 (Fig. 20).

Fig. 20. Fixed points and invariant manifolds.

For given sj and sj+1, the mapping is always linear, with a homogeneous
part given above. It follows that all orbits have the same Liapunov exponent, φ,
and that all periodic orbits are unstable.

It is easy to show that there are five kinds of asymptotic regimes:

1. right-escaping orbit: Xj → +∞, wj → +∞.
2. right-asymptotic orbit: Xj → +1, wj → 0.
3. left-escaping orbit: Xj → −∞, wj → −∞.
4. left-asymptotic orbit: Xj → −1, wj → 0.
5. oscillating orbit: Xj and wj are bounded but have no limit.

To a given orbit, we associate the doubly infinite sequence:

S : · · · s−2, s−1, s0, s1, s2, · · ·

corresponding to the disks on which the particle bounces.
If an orbit is bounded for j →∞, then:

Xj + wj =
eφ − 1
eφ + 1


sj + 2

+∞∑
k=j+1

e(j−k)φsk


 .
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If an orbit is bounded for j → −∞, then:

Xj − wj =
1− e−φ

e−φ + 1

[
sj + 2

j−1∑
k=−∞

e(k−j)φsk

]
.

If an orbit is bounded in both directions, then:

Xj =
eφ − 1
eφ + 1

[
sj +

+∞∑
k=1

e−kφ(sj+k + sj−k)

]
,

wj =
eφ − 1
eφ + 1

+∞∑
k=1

e−kφ(sj+k − sj−k).

From the above formulae, we can conclude that to a given sequence S there
corresponds at most one orbit bounded in both directions. More precisely, we
can prove:

If eφ > 3 then to any given sequence S there corresponds exactly one orbit
bounded in both directions.

If eφ = 3 then to any given sequence S there corresponds exactly one orbit
bounded in both directions, with one exception: if the sequence has the form
sj = −1 and sk = +1 for k �= j, then there exist no orbit bounded in both
directions which corresponds to it.

If eφ < 3 then there exist sequences S to which no bounded orbit corresponds.
In the particular case of the one-parameter family we have chosen the inital

conditions are:
X0 = h, u1/2 = 0,

with −∞ < h < +∞. These orbits are called the h-orbits. This gives:

wo = −(h− s0) tanh
φ

2
, X1 = h, w1 = (h− s0) tanh

φ

2
.

The orbit is symmetrical with respect to the w = 0 axis, so:

Xj = X1−j , sj = s1−j , wj = −w1−j .

The iterated mapping Fn becomes:

xn + wn =
2enφ

eφ + 1


h− (eφ − 1)

n−1∑
j=1

e−jφsj − e(1−n)φsn


 ,

xn − wn =
2e−nφ

e−φ + 1


h+ (1− e−φ)

n−1∑
j=1

ejφsj − e(n−1)φsn


 .
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4.3 Symbolic dynamics

To a given h-orbit we can associate a sequence of binary digits

D : d1, d2, · · ·
with dj = 0 if sj = −1 and dj = 1 if sj = 1, for j = 1, 2, · · ·) The D sequence
differs from the S sequence in that the dj are defined only for j > 0.

Then we define a number A by its binary representation:

A = 0.d1d2d3 · · · =
∞∑
j=1

d−jdj .

Clearly, 0 ≤ A ≤ 1. A given sequence defines one value of A, but there might
be two sequences with the same value of A.

A = k × 2−n with k and n integers; this is called a round number.

1. If 0 < A < 1, then there exists one representation of A for which k is
odd and n > 0. There are 2 different D sequences corresponding to A:
0.d1d2 · · · dn−10111 · · · and 0.d1d2 · · · dn−11000 · · ·.

2. If A = 0, there is only 1 corresponding D sequence: 0.000 · · ·
3. If A = 1, there is only 1 corresponding D sequence: 0.111 · · ·.

These sequences are either 0-ending or 1-ending.
A is not of the previous form: this is called a non-round number. There is

always exactly one corresponding D sequence. It is neither 0-ending nor 1-ending.
This is called an oscillating sequence.

Because of the symmetry of the h-orbits, the asymptotic behaviour of Xj

is the same for j → +∞ and for j → −∞, which justifies that we use the D
sequences instead of the S sequences.

There is a simple correspondence between the types of orbits, the D sequence
and A.

orbit D sequence A
right-escaping 1-ending round
right-asymptotic 1-ending round
left-escaping 0-ending round
left-asymptotic 0-ending round
oscillating oscillating non-round

In a continuity interval, the orbit changes continuously, so A is constant. This
suggests to look at the function A(h). Fig. 21 shows the numerical result for
λ = eΦ = 3.5. The reader will have recognized a Devil’s staircase with an infinite
number of horizontal steps. In the case where eΦ ≥ 3, A is a continuous, non-
decreasing function of h, and it is possible to explain completely the structure.

In the case where eΦ < 3 (Fig. 22), the structure is more complex and we
cannot fully analyse it. We can still show that A is a non-decreasing function of
h.

At this point, we study the inverse problem: which values of h correspond
to a given D sequence, or to a given A ? We have to consider different type of
values of A.
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Fig. 21. The function A(h) for eφ = 3.5.

Fig. 22. The function A(h) for eφ = 2.0.

• Non-round A: there corresponds at most 1 h-orbit.

1. If eφ ≥ 3, there corresponds exactly 1 h-orbit.

h = (eφ − 1)
+∞∑
j=1

e−jφsj .

2. If eφ < 3, there exist non-round A to which no h-orbit corresponds.
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• Round A, 0 < A < 1: there are 2 corresponding D sequences.

1. Asymptotic orbits. To a given 0-ending or 1-ending sequence there corre-
sponds at most 1 asymptotic h-orbit. If eφ ≥ 3, there corresponds exactly
1 h-orbit. h is given by the previous formula. Since D is of the form s1 to
sn arbitrary; sj = −sn for j > n, we can write:

h = (eφ − 1)
n−1∑
j=1

e−jφsj + (eφ − 2)e−nφsn.

2. Escaping orbits. The 1-ending sequence corresponds to a right-asymptotic
orbit:

h− = (eφ − 1)
n−1∑
j=1

e−jφsj − (eφ − 2)e−nφ.

The 0-ending sequence corresponds to a left–asymptotic orbit:

h+ = (eφ − 1)
n−1∑
j=1

e−jφsj + (eφ − 2)e−nφ.

These two values satisfy the relation:

h+ − h− = 2(eφ − 2)e−nφ > 0.

Since A(h) is non-decreasing, the whole interval h− ≤ h ≤ h+ corresponds
to the same value of A. The open interval h− < h < h+ consists entirely
of escaping orbits. The interval of h values corresponding to this value of A
does not extend past h− or h+.

• A = 0: there is only h+, but no h−. This value corresponds to the interval
−∞ < h ≤ −1. h = -1 corresponds to a left-asymptotic orbit: the left fixed
point of F . The open interval −∞ < h < −1 corresponds to a left-escaping
orbit.
• A = 1: there is only h−, but no h+. This value corresponds to the interval

+1 ≤ h < +∞. h = +1 corresponds to a right-asymptotic orbit: the right fixed
point of F . The open interval +1 < h < +∞ corresponds to a right-escaping
orbit.

Provided eφ ≥ 3, there are two additional results that can be proved:

• The curve A(h) has exact self-similarity. The curve as a whole extends from
h = −1 to h = +1 and from A = 0 to A = 1. In the lower left corner is an
exact replica of the whole picture, reduced by a factor eΦ horizontally and
2 vertically, extending from h = −1 to h = −1 + 2e−Φ and from A = 0 to
A = 1/2. There is an identical replica in the upper right corner.
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• The set of values of h corresponding to bounded orbits forms a Cantor set,
with measure 0 and with fractal dimension

ln(2)/Φ.

In the borderline case eΦ = 3, we obtain exactly the classical Cantor set
(repeated exclusion of the middle third). The asymptotic orbits form an enu-
merable subset of the bounded orbits; this subset also has the dimension given
above.
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Close Encounters in Öpik’s Theory
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Abstract. In many cases of interest, close encounters of small bodies and planets can
be treated analytically in the framework of a theory due to Öpik, that has been used
in many statistical studies of close encounters. The basic formulation of the theory
can be extended by the explicit introduction of the nodal distance and of time; it is
then possible to reproduce the basic features of the encounters with the Earth of some
near-Earth asteroids, and to uncover some geometric properties of resonant orbits.
The variables used in Öpik’s theory turn out to be useful also in the problem of the
identification of meteoroid streams.

1 Introduction

Close encounters with the planets are known to be the cause of fast orbital
evolution for those small solar system bodies that are either in planet-crossing
orbits or in non-planet-crossing orbits that anyway allow strong gravitational
interactions with a planet.

In the latter case the motion in the vicinity of the planet is rather compli-
cated, and temporary satellite captures are possible. Many cases of this type of
behaviour have been found in studies of the motion of Jupiter-family comets;
the best known cases are those of 39P/Oterma [4] [5] [6], of 82P/Gehrels 3 [21]
[3] [6], of 111P/Helin-Roman-Crockett [8] [23], and of D/Shoemaker-Levy 9 [1]
[15]; actually, numerical studies of motion of D/Shoemaker-Levy 9 have shown
that the comet presumably underwent a very long satellite capture before the
collision with Jupiter.

On the other hand, when the planetocentric velocity of the small body is
sufficiently high, so that the planetocentric orbit is hyperbolic and the encounter
duration is short, the quantitative description of the motion is greatly simplified
[9], and can be done using Öpik’s theory of close encounters [20].

This theory allows, under rather simple assumptions, to treat close encounters
of small bodies and planets analytically. In its standard formulation, the motion
of the bodies is taken as rectilinear near the encounter, and nothing is said about
the distance between the two trajectories, implicitly assumed to be small, but
never appearing into the equations. In this formulation the theory has been used
only to get qualitative results, or to do statistical investigations.

If the minimum distance between the trajectories is explicitly introduced [26],
together with a time coordinate, it is possible to have explicit expressions for the

D. Benest and C. Froeschlé (Eds.): LNP 590, pp. 145–178, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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motion of the small body, thus making a comparison with a numerical integra-
tion of the actual motion feasible. Moreover, all the post-encounter parameters
become analytically computable from the initial conditions.

We will draw particular attention to the perturbations of the semimajor axis
of the orbit of the small body; the distribution of energy perturbations of a given
ensemble of initial orbits can be computed analytically [25], and it is shown that
all the initial conditions leading to the same perturbation of the semimajor axis
are characterized by a very simple geometric property.

Furthermore, the variables used in Öpik’s theory turn out to be ideally suited
to describe meteor orbits [24], as they are in one-to-one correspondence with the
quantities actually observed, and can in fact be used to search for meteoroid
streams [14]; moreover, two of these quantities are invariant for the principal
secular perturbation affecting meteoroid streams.

2 Basic formulae of Öpik’s theory

2.1 The components of the planetocentric velocity

The angle α between the position and velocity vectors can be computed from
the expression of the angular momentum L:

r =
a(1− e2)
1 + e cos f

(1)

v =

√
2
r
− 1

a
=

√
2a− r

ra
(2)

L =
√

a(1− e2) = rv sinα = r

√
2a− r

ra
sinα (3)

sinα =

√
a2(1− e2)
2ar − r2

. (4)

Setting r = 1:

sinα =

√
a2(1− e2)
2a− 1

. (5)

Now, set the reference frame so that the small body is in (1, 0, 0) (this implies it to
be at one of the nodes of its orbit); its heliocentric velocity will have components:

 vx
vy
vz


 =


 v cosα

v sinα cos i
±v sinα sin i


 =


±

√
2− 1/a− a(1− e2)√

a(1− e2) cos i
±√a(1− e2) sin i


 . (6)

To obtain the planetocentric velocity U , for a planet on a circular orbit at unit
distance from the Sun, and for which we disregard the effect of the mass on the
velocity, we simply subtract its velocity, that has components (0, 1, 0):

Ux
Uy
Uz


 =


±

√
2− 1/a− a(1− e2)√
a(1− e2) cos i− 1
±√a(1− e2) sin i


 ; (7)
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its modulus is:

U =

√
3− 1

a
− 2
√

a(1− e2) cos i. (8)

This can be rewritten as:
U =

√
3− T (9)

where T is the Tisserand parameter with respect to the planet:

T =
1
a
+ 2
√

a(1− e2) cos i. (10)

2.2 The angles θ and φ

We can introduce two angles, θ and φ, such that (Fig. 1):

Ux

Uy
Uz


 =


 U sin θ sinφ

U cos θ
U sin θ cosφ


 (11)

and, conversely:

cos θ =
Uy
U

(12)

tanφ =
Ux
Uz

(13)

x
y

z

U

theta

phi

Fig. 1. The geometry of the pre-encounter planetocentric velocity vector U .
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Using the previous expressions, θ, φ can be obtained in terms of a, e, i:

cos θ =

√
a(1− e2) cos i− 1√

3− 1/a− 2
√

a(1− e2) cos i
(14)

tanφ =
±√2− 1a− a(1− e2)
±√a(1− e2) sin i

. (15)

Since √
a(1− e2) cos i =

3− 1/a− U2

2
, (16)

a simple expression for θ is in terms of U , a:

cos θ =
1− U2 − 1/a

2U
. (17)

Finally, a, e, i can be obtained from Ux, Uy, Uz:

a =
1

1− U2 − 2Uy
(18)

e =
√

U4 + 4U2
y + U2

x(1− U2 − 2Uy) + 4U2Uy (19)

tan i =
Uz

1 + Uy
(20)

and from U , θ, φ:

a =
1

1− U2 − 2U cos θ
(21)

e = U

√
(U + 2 cos θ)2 + sin2 θ sin2 φ(1− U2 − 2U cos θ) (22)

tan i =
U sin θ cosφ
1 + U cos θ

(23)

2.3 The rotation of U

As a consequence of the encounter, U is rotated into U ′ (Fig. 2), of the same
length; the angle between the two vectors is γ, that can be obtained in terms of
m, the mass of the planet in units of the mass of the Sun, U , b, and d, the two
latter being the unperturbed and the perturbed minimum distance at encounter,
respectively (note that the gravitational constant, in the units used, is 1):

tan
γ

2
=

m

bU2 =
m

U
√

d(2m + U2d)
(24)

cos γ =
1− tan2 γ/2
1 + tan2 γ/2

=
b2U4 −m2

b2U4 + m2 (25)

sin γ =
2 tan γ/2

1 + tan2 γ/2
=

2mbU2

b2U4 + m2 (26)

sin
γ

2
=

m√
m2 + b2U4

=
m

m + U2d
. (27)
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x

y

z

U

theta

phi

U’

theta’

phi’

Fig. 2. The geometry of the rotation of the pre-encounter planetocentric velocity vector
U into the post-encounter vector U ′. Some angles are not evidenced, in order not to
clutter the plot. The angle between U and U ′ is γ, that is also one of the sides of
the spherical triangle whose remaining sides are θ and θ′ (see text). In this triangle,
χ = φ− φ′ is the angle opposite to γ, and ψ is the angle opposite to θ′.

These expressions can be simplified putting c =
m

U2 :

tan
γ

2
=

c

b
=

Uc√
d(2m + U2d)

(28)

cos γ =
b2U4 −m2

b2U4 + m2 =
b2 − c2

b2 + c2
(29)

sin γ =
2mbU2

b2U4 + m2 =
2bc

b2 + c2
(30)

sin
γ

2
=

m

m + U2d
=

U2c

U2c + U2d
=

c

c + d
. (31)

Furthermore, b can be expressed in terms of m, U , d:

b =

√
d(2m + U2d)

U
=
√

d2 + 2cd, (32)

and d in terms of m, U , b:

d =

√
m2

U4 + b2 − m

U2 =
√

b2 + c2 − c; (33)
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introducing V , the perturbed velocity at d:

V 2 = U2 +
2m
d

(34)

we obtain U , c, b γ in terms of m, d, V :

U2 = V 2 − 2m
d

(35)

c =
m

U2 =
m

V 2 − 2m/d
=

md

V 2d− 2m
(36)

b =
√

d2 + 2cd = d

√
V 2d

V 2d− 2m
(37)

tan
γ

2
=

m

V
√

d(V 2d− 2m)
(38)

sin
γ

2
=

m

V 2d−m
. (39)

To obtain the angles θ′ and φ′, that define the direction of U ′, we must first
introduce the components of b, i.e. the vector going from the planet to the
coordinates of the intersection of the direction of U with the plane perpendicular
to U and containing the planet; this b-plane is the ξ-ζ plane of a ξ-η-ζ reference
frame whose η-axis is directed along U , and ξ and ζ are oriented as specified in
the next section. We define, in agreement with [7],

ξ = b sinψ (40)
ζ = b cosψ; (41)

then θ′ and φ′ can be obtained in terms of θ, φ, γ, ψ. In particular, let us consider
the spherical triangle with sides γ, θ and θ′, in which χ = φ − φ′ is the angle
opposite to γ and ψ is the angle opposite to θ′; for the law of cosines for sides:

cos θ′ = cos θ cos γ + sin θ sin γ cosψ, (42)

and for the law of sines:
sinχ =

sinψ sin γ

sin θ′
. (43)

Moreover, the law of cosines for sides applied again gives:

cosχ =
cos γ − cos θ cos θ′

sin θ sin θ′

=
sin θ cos γ − cos θ sin γ cosψ

sin θ′
, (44)

so that:

tanχ =
sin γ sinψ

sin θ cos γ − cos θ sin γ cosψ
(45)
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tanφ′ =
tanφ− tanχ

1 + tanφ tanχ

=
sin θ tanφ cos γ − cos θ tanφ sin γ cosψ − sin γ sinψ

sin θ cos γ − cos θ sin γ cosψ + tanφ sin γ sinψ
(46)

cosφ′ =
1√

1 + tan2 φ′

=
cosφ(sin θ cos γ − cos θ sin γ cosψ) + sinφ sin γ sinψ√

(sin θ cos γ − cos θ sin γ cosψ)2 + sin2 γ sin2 ψ
(47)

sinφ′ = cosφ′ tanφ′

=
sinφ(sin θ cos γ − cos θ sin γ cosψ)− cosφ sin γ sinψ√

(sin θ cos γ − cos θ sin γ cosψ)2 + sin2 γ sin2 ψ
. (48)

3 From the planetocentric to the b-plane frame and back

The transformation from the planetocentric frame (axes X, Y , Z, with the Sun
on the negative X-axis and the Y -axis in the direction of the motion of the
planet) to that of the b-plane (axes ξ, η, ζ) is accomplished by the following two
rotations:

• by −φ (i.e. by φ in the clockwise direction) about Y ;
• by −θ about ξ (which is perpendicular to the old Y -axis and to U);

in column notation:
 ξ

η
ζ


 =


1 0 0
0 cos θ sin θ
0 − sin θ cos θ




 cosφ 0 − sinφ

0 1 0
sinφ 0 cosφ




X

Y
Z




=


 X cosφ− Z sinφ
(X sinφ + Z cosφ) sin θ + Y cos θ
(X sinφ + Z cosφ) cos θ − Y sin θ


 . (49)

The inverse transformation is accomplished by the following two rotations:

• by θ about ξ;
• by φ about Y ;

in column notation:
X

Y
Z


 =


 cosφ 0 sinφ

0 1 0
− sinφ 0 cosφ




1 0 0
0 cos θ − sin θ
0 sin θ cos θ




 ξ

η
ζ




=


 (η sin θ + ζ cos θ) sinφ + ξ cosφ

η cos θ − ζ sin θ
(η sin θ + ζ cos θ) cosφ− ξ sinφ


 . (50)

To get a better idea of the geometry, let us consider the intersection of the
b-plane with the ecliptic, and the projections on the b-plane of X, Y , and Z.
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3.1 The ecliptic on the b-plane

On the ecliptic Z = 0, so that:

 ξ

η
ζ


 =


 X cosφ

X sinφ sin θ + Y cos θ
X sinφ cos θ − Y sin θ


 ; (51)

on the b-plane η = 0, and therefore:

0 = X sinφ sin θ + Y cos θ → Y = −X
sinφ sin θ

cos θ(
ξ
ζ

)
=
(

X cosφ
X sinφ cos θ − Y sin θ

)
=
(

X cosφ
X(sinφ/ cos θ)

)
. (52)

3.2 The projection of the X-axis on the b-plane

For Y = Z = 0 one has: 
 ξ

η
ζ


 =


 X cosφ

X sinφ sin θ
X sinφ cos θ


 ; (53)

and therefore: (
ξ
ζ

)
=
(

X cosφ
X sinφ cos θ

)
. (54)

3.3 The projection of the Y -axis on the b-plane

For X = Z = 0 one has: 
 ξ

η
ζ


 =


 0

Y cos θ
−Y sin θ


 ; (55)

and therefore: (
ξ
ζ

)
=
(

0
−Y sin θ

)
. (56)

Note that the ζ-axis is always the projection of the Y -axis (actually, of the −Y -
axis). Since a difference in the timing of encounter between the small body and
the planet would mean that the position of the latter, at the time when the small
body crosses the ecliptic, would change along the Y -axis, this implies that the
ζ-axis can be seen as a sort of time axis, and in particular that a distribution of
fictitious small bodies all on the same orbit, separated only in mean anomaly,
would show up in the b-plane as a segment parallel to the ζ-axis.
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3.4 The projection of the Z-axis on the b-plane

For X = Y = 0 one has: 
 ξ

η
ζ


 =


 −Z sinφ

Z cosφ sin θ
Z cosφ cos θ


 ; (57)

and therefore: (
ξ
ζ

)
=
( −Z sinφ

Z cosφ cos θ

)
. (58)

3.5 Examples

Figure 3 shows the intersection with the ecliptic and the projections of X, Y ,
and Z on the b-plane of the October 2028 encounter with the Earth of asteroid
1997XF11; this encounter will take place at the descending node, in the post-
perihelion branch of the orbit. The orbit of 1997XF11 has a = 1.442 AU, e =
0.484 and i = 4.1◦, U = 0.459, θ = 84.0◦, and φ = 99.5◦.

��0:01 0:0 0:01

�

�0:01

0:0

0:01

q

r

q

b

Fig. 3. The intersection of the ecliptic and the projections of X, Y , and Z on the b-
plane of the October 2028 encounter with the Earth of asteroid 1997XF11. The lengths
of all the axes drawn is equal to the semi-width of the plot (0.02 AU), in order to give
an idea of the spatial arrangement. The positive end of the X-axis is denoted by a
large full dot, the positive end of the Y -axis has a small dot (note it on the negative
ζ-axis), and the positive end of the Z-axis has an open circle. The uninterrupted line
is the intersection with the ecliptic.

As it is possible to see, for this low-inclination asteroid the intersection with
the ecliptic is very close to the ζ-axis, while the projection of the Z-axis is very
close to the ξ-axis of the b-plane.
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Fig. 4. Same as Fig. 3 for the b-plane relative to the August 2027 encounter with the
Earth of asteroid 1999AN10.

Figure 4 shows the situation on the b-plane of the August 2027 encounter with
the Earth of asteroid 1999AN10; this encounter will take place at the ascending
node, in the post-perihelion branch of the orbit. The orbit of 1999AN10 has
a = 1.459 AU, e = 0.562 and i = 39.9◦, U = 0.884, θ = 105.3◦, and φ = 41.3◦.

In this case the inclination of the orbit is much larger, so that the intersection
with the ecliptic is not particularly close to the ζ-axis, while the projections of
both the X-axis and the Z-axis are almost symmetrically placed with respect to
the ξ-axis of the b-plane.

4 The motion of the small body

We use a reference frame in which the planet is stationary in one point of the
y-axis (to be specified in a moment), the direction of its motion is along the
same axis, and the Sun is on the x-y plane, in the negative-x half-plane. If t0 is
the time of crossing of the ecliptic by the small body:

x(t)
y(t)
z(t)


 =


Ux(t− t0) + x(t0)

Uy(t− t0) + y(t0)
Uz(t− t0)


 . (59)

We set y(t0) = 0, and x(t0) = x0 (the nodal distance), so that:
x(t)

y(t)
z(t)


 =


U sin θ sinφ(t− t0) + x0

U cos θ(t− t0)
U sin θ cosφ(t− t0)


 , (60)

and the coordinates of the planet are (0, yp, 0).
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4.1 The local Minimum Orbital Intersection Distance (MOID)

In many cases of interest, close planetary encounters are possible if one or both
of the nodes of the orbit of the small body are close to the orbit of a planet. In
this case, it is useful to speak of local Minimum Orbital Intersection Distance
(MOID), indicating with this expression the local minimum of the distance be-
tween the two orbits.

In the framework of Öpik’s theory it is possible to deduce an approximate
expression for the local MOID at a specified node, by considering that the small
body travels on a straight line:

(
x
z

)
=
(
(Ux/Uy)y + x0

(Uz/Uy)y

)
; (61)

then, the square of the distance from the y-axis is:

D2
y = x2 + z2 =

U2
x + U2

z

U2
y

y2 + 2
Ux
Uy

x0y + x20 (62)

and its derivative is:

d(D2
y)

dy
=

2(U2
x + U2

z )
U2
y

y +
2Ux
Uy

x0; (63)

it is zero at:
y = − UxUy

U2
x + U2

z

x0. (64)

In terms of θ and φ we have:

y = −cos θ sinφ

sin θ
x0, (65)

so that:
D2
y = x20 cos

2 φ. (66)

This means that the ratio between the local MOID, close to the node under
examination, and x0 is:

Dy/x0 = cosφ. (67)

This expression can be generalized to the case of an elliptic orbit for the planet
[2].

In order to have an encounter at the minimum possible distance the planet
(stationary in our reference frame) must be at (0,− cos θ(sinφ/ sin θ)x0, 0), and
the small body must pass at the MOID point at time tMOID:

yMOID = − UxUy
U2
x + U2

z

x0 = Uy(tMOID − t0) (68)

tMOID − t0 = − Ux
U2
x + U2

z

x0 = − sinφ

U sin θ
x0. (69)
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At t = tMOID the coordinates of the small body are:

x(tMOID)

y(tMOID)
z(tMOID)


 =


U sin θ sinφ(tMOID − t0) + x0

U cos θ(tMOID − t0)
U sin θ cosφ(tMOID − t0)




=


 x0 cos2 φ
−x0 cos θ sinφ/ sin θ
−x0 sinφ cosφ


 (70)

and the distance is

Dy =
√

x20 cos4 φ + x20 sin
2 φ cos2 φ = x0 cosφ. (71)

We can pass from (x, y, z) to the planetocentric axes (X,Y, Z):

X

Y
Z


 =


 x

y + (cos θ sinφ/ sin θ)x0
z


 (72)

so that the coordinates on the b-plane are:

 ξ

η
ζ


 =


 X cosφ− Z sinφ
(X sinφ + Z cosφ) sin θ + Y cos θ
(X sinφ + Z cosφ) cos θ − Y sin θ


 =


x0 cosφ

0
0


 . (73)

This result is especially interesting in view of the fact, already remarked before,
that displacements along the ζ-axis correspond to changes in the time of en-
counter; now we see that displacements along the ξ-axis correspond to changes
in the distance between the orbits. Thus, the two key factors governing the pos-
sibility of a collision, i.e. orbital distance and time separation at encounter, map
nicely in the two axes that we have defined on the b-plane.

4.2 The planetocentric orbital elements of the small body

The planetocentric semimajor axis can be obtained from the energy at infinity

ag = − m

U2 = −c (74)

and the eccentricity from the magnitude of the angular momentum

eg =

√
1− b2U2

ag
=

√
1 +

b2

c2
=
√

b2 + c2

c
. (75)

To compute the inclination we need the third component of the planetocentric
angular momentum, and to compute the latter we need to the minimum unper-
turbed distance between the particle and the Z-axis. Again, we note that the
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small body travels on a straight line:

x =
Ux
Uz

z + x0 (76)

y =
Uy
Uz

z. (77)

The square of the distance from the Z-axis (not the z-axis!) is:

D2
Z = x2 + y2 =

(
Ux
Uz

z + x0

)2

+
(

Uy
Uz

z − yp

)2

=
U2
x + U2

y

U2
z

z2 +
2(Uxx0 − Uyyp)

Uz
z + x20 + y2p (78)

and its derivative is:

d(D2
Z)

dz
=

2(U2
x + U2

y )
U2
z

z +
2(Uxx0 − Uyyp)

Uz
; (79)

it is zero at:

z = − (Uxx0 − Uyyp)Uz
U2
x + U2

y

, (80)

so that:

D2
Z = x20 + y2p −

U2
xx

2
0 − 2UxUyx0yp + U2

y y
2
p

U2
x + U2

y

=
(x0 cos θ + yp sin θ sinφ)2

1− sin2 θ cos2 φ
. (81)

The third component of the angular momentum is then DZU , and we have that:

cos ig =
DZU

bU
=

x0 cos θ + yp sin θ sinφ

b
√
1− sin2 θ cos2 φ

. (82)

4.3 The encounter

In general, if the planet is not at the point corresponding to the MOID, but at
a generic point (0, yp, 0), we still have that:


x

y
z


 =


U sin θ sinφ(t− t0) + x0

U cos θ(t− t0)
U sin θ cosφ(t− t0)


 (83)

and we want to minimize the distance from the planet:

D2 = x2 + (y − yp)2 + z2

= U2t2 + 2U(x0 sin θ sinφ− yp cos θ − Ut0)t
+U2t20 − 2U(x0 sin θ sinφ− yp cos θ)t0 + x20 + y2p (84)
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so we take the derivative with respect to t:

d(D2)
dt

= 2U2t− 2U(yp cos θ − x0 sin θ sinφ + Ut0) (85)

and find its zero:
tb =

yp cos θ − x0 sin θ sinφ

U
+ t0. (86)

One has the minimum approach distance when the small body is in:
x

y
z


 =


 sin θ sinφ(yp cos θ − x0 sin θ sinφ) + x0

cos θ(yp cos θ − x0 sin θ sinφ)
sin θ cosφ(yp cos θ − x0 sin θ sinφ)


 (87)

and the distance is:

D ≡ b =
√

x2 + (y − yp)2 + z2

=
√

x20 cos2 φ + (x0 cos θ sinφ + yp sin θ)2. (88)

Again we pass from (x, y, z) to the planetocentric axes (X,Y, Z), that differ
because in the latter frame the planet is in (0, 0, 0) and not in (0, yp, 0):

X
Y
Z


 =


 yp sin θ cos θ sinφ− x0 sin2 θ sin2 φ + x0

yp cos2 θ − x0 sin θ cos θ sinφ− yp
yp sin θ cos θ cosφ− x0 sin2 θ sinφ cosφ


 (89)

so that the coordinates on the b-plane are:
 ξ

η
ζ


 =


 X cosφ− Z sinφ
(X sinφ + Z cosφ) sin θ + Y cos θ
(X sinφ + Z cosφ) cos θ − Y sin θ




=


 x0 cosφ

0
x0 cos θ sinφ + yp sin θ


 . (90)

The expressions for b and ψ are:

b =
√

ξ2 + ζ2 =
√

x20 cos2 φ + (x0 cos θ sinφ + yp sin θ)2 (91)

sinψ =
ξ

b
=

x0 cosφ√
x20 cos2 φ + (x0 cos θ sinφ + yp sin θ)2

(92)

cosψ =
ζ

b
=

x0 cos θ sinφ + yp sin θ√
x20 cos2 φ + (x0 cos θ sinφ + yp sin θ)2

(93)

So, given θ and φ, the coordinates ξ and ζ on the b-plane depend only on x0 and
yp; we can invert the relationship and obtain:

x0 =
ξ

cosφ
(94)

yp =
ζ − cos θ tanφξ

sin θ
. (95)
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At time

tb =
yp cos θ − x0 sin θ sinφ

U
+ t0 =

cos θζ − tanφξ

U sin θ
+ t0, (96)

corresponding to the minimum unperturbed distance b, we instantaneously ro-
tate the velocity vector, that is parallel to the incoming asymptote of the planeto-
centric hyperbola, so as to make it parallel to the other asymptote; moreover, the
position of the small body becomes, again instantaneously, the one correspond-
ing to the minimum unperturbed distance on the new orbit; the coordinates in
the ξ-η-ζ frame pass from


 ξ

η
ζ


 =


 x0 cosφ

0
x0 cos θ sinφ + yp sin θ


 (97)

to 
 ξ′

η′

ζ ′


 =


 ξ cos γ

b sin γ
ζ cos γ


 (98)

and, eliminating γ,

ξ′ =
(b2 − c2)x0 cosφ

b2 + c2
(99)

η′ =
2b2c

b2 + c2
(100)

ζ ′ =
(b2 − c2)(x0 cos θ sinφ + yp sin θ)

b2 + c2
. (101)

In the X-Y -Z frame

X ′ = (η′ sin θ + ζ ′ cos θ) sinφ + ξ′ cosφ

=
2b2c sin θ sinφ + (b2 − c2)(cos θ sinφζ + cosφξ)

b2 + c2
(102)

Y ′ = η′ cos θ − ζ ′ sin θ

=
2b2c cos θ − (b2 − c2) sin θζ

b2 + c2
(103)

Z ′ = (η′ sin θ + ζ ′ cos θ) cosφ− ξ′ sinφ

=
2b2c sin θ cosφ + (b2 − c2)(cos θ cosφζ − sinφξ)

b2 + c2
. (104)

We can then easily go back to the x-y-z frame, since

x

y
z


 =


 X

Y − yp
Z


 (105)
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so that

x′(tb) =
2b2c sin θ sinφ + (b2 − c2)(cos θ sinφζ + cosφξ)

b2 + c2
(106)

y′(tb) =
2b2c cos θ − (b2 − c2) sin θζ

b2 + c2
− ζ − cos θ tanφξ

sin θ
(107)

z′(tb) =
2b2c sin θ cosφ + (b2 − c2)(cos θ cosφζ − sinφξ)

b2 + c2
. (108)

The components of the new velocity vector are given by

U ′x

U ′y
U ′z


 =


 U sin θ′ sinφ′

U cos θ′

U sin θ′ cosφ′


 (109)

where θ′ and φ′ are given by the formulae seen before.
The coordinates of the crossing of the ecliptic in the post-encounter branch

of the motion can be obtained considering that:

x′(tb)

y′(tb)
z′(tb)


 =


U ′x(tb − t′0) + x′(t′0)

U ′y(tb − t′0) + y′(t′0)
z′(tb)U ′z(tb − t′0)


 ; (110)

the time of crossing is then

t′0 = tb − z′(tb)
U ′z

, (111)

the y-coordinate of the crossing is

y′(t′0) ≡ y′0 = y′(tb)− U ′y(tb − t′0), (112)

and the x-coordinate of the crossing is

x′(t′0) ≡ x′0 = x′(tb)− U ′x(tb − t′0). (113)

4.4 The new local MOID

The new local MOID is
D′y = x′0 cosφ

′; (114)

we can derive it as a function of the pre-encounter b-plane coordinates b and ψ;
we begin by rearranging x′0:

x′0 = x′(tb)− U ′x(tb − t′0)
= b{sin θ sinφ sin γ + cos θ sinφ cosψ cos γ + cosφ sinψ cos γ
− tanφ′[sin θ cosφ sin γ + cos θ cosφ cosψ cos γ
− sinφ sinψ cos γ]} (115)
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and then compute D′y:

D′y = b{cosφ′[sin θ sinφ sin γ + cos θ sinφ cosψ cos γ
+cosφ sinψ cos γ]
− sinφ′[sin θ cosφ sin γ + cos θ cosφ cosψ cos γ
− sinφ sinψ cos γ]}

=
b sin θ sinψ√

(sin θ cos γ − cos θ sin γ cosψ)2 + sin2 γ sin2 ψ
. (116)

Expressing D′y as a function of b, ξ and ζ:

D′y =
(b2 + c2) sin θξ√

[(b2 − c2) sin θ − 2c cos θζ]2 + 4c2ξ2
. (117)

The implication of the last expression derived for the new local MOID is that,
unless sin θ = 0, i.e. for exactly tangent and coplanar orbits, for which the use
of Öpik’s theory would be questionable [9], in all practical case the new local
MOID cannot be 0 unless the pre-encounter local MOID, i.e. ξ, is not already
0. In other words, initial conditions on the ζ-axis end up on the ζ-axis of the
post-encounter b-plane.

4.5 Post-encounter coordinates in the post-encounter b-plane

The coordinates in X-Y -Z frame after the rotation are, as seen before,

X ′ =
2b2c sin θ sinφ + (b2 − c2)(cos θ sinφζ + cosφξ)

b2 + c2
(118)

Y ′ =
2b2c cos θ − (b2 − c2) sin θζ

b2 + c2
(119)

Z ′ =
2b2c sin θ cosφ + (b2 − c2)(cos θ cosφζ − sinφξ)

b2 + c2
. (120)

We can then apply the appropriate rotations by θ′ and φ′ to obtain the coordi-
nates in the post-encounter b-plane (we denote this reference frame by ξ∗-η∗-ζ∗):

ξ′∗ = X ′ cosφ′ − Z ′ sinφ′

=
[2b2c sin θ sinφ + (b2 − c2)(cos θ sinφζ + cosφξ)] cosφ′

b2 + c2

− [2b2c sin θ cosφ + (b2 − c2)(cos θ cosφζ − sinφξ)] sinφ′

b2 + c2
(121)

η′∗ = (X ′ sinφ′ + Z ′ cosφ′) sin θ′ + Y ′ cos θ′

=
{
[2b2c sin θ sinφ + (b2 − c2)(cos θ sinφζ + cosφξ)] sinφ′

b2 + c2
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+
[2b2c sin θ cosφ + (b2 − c2)(cos θ cosφζ − sinφξ)] cosφ′

b2 + c2

}
sin θ′

+
[2b2c cos θ − (b2 − c2) sin θζ] cos θ′

b2 + c2
(122)

ζ ′∗ = (X ′ sinφ′ + Z ′ cosφ′) cos θ′ − Y ′ sin θ′

=
{
[2b2c sin θ sinφ + (b2 − c2)(cos θ sinφζ + cosφξ)] sinφ′

b2 + c2

+
[2b2c sin θ cosφ + (b2 − c2)(cos θ cosφζ − sinφξ)] cosφ′

b2 + c2

}
cos θ′

− [2b2c cos θ − (b2 − c2) sin θζ] sin θ′

b2 + c2
. (123)

A numerical check shows that η′∗ = 0, as expected.

4.6 The next encounter

The orbital period of the planet is 2π, and that of the small body after the
encounter is 2πa′3/2; at time

t′′0 = t′0 + h · 2πa′3/2, (124)

where h is an integer, the small body will be again at the same node. On the
other hand, in the x-y-z frame (and in the rectilinear motion approximation)
the node of the orbit of the small body moves backwards along the y-axis with
speed −1; actually, it revolves backwards with period 2π.

At time t′0 the y-component of its distance from the planet was yp − y′0. We
now compute its displacement δyp along the y-axis between t′0 and t′′0 :

δyp = −mod[t′′0 − t′0 + π, 2π] + π. (125)

The planetocentric distance of the small body when it is at the node is then

D(t′′0) =
√

x′0
2 + (yp − y′0 + δyp)2. (126)

So, in the framework of Öpik’s theory, i.e. in terms of simple 2-body heliocen-
tric motion between planetary encounters, the initial conditions for the next
encounter are as follows:

• components of the planetocentric velocity: U ′′x ≡ U ′x, U ′′y ≡ U ′y, U ′′z ≡ U ′z;
• time of passage at the node: t′′0 ;
• nodal distance: x′′0 ≡ x′0;
• distance of the planet from the node: y′′p = yp − y′0 + δyp.

Let us summarize all the quantities needed to compute the initial conditions of
the next encounter, where appropriate as functions of b, ξ and ζ.
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The components of the velocity vector U ′ are computed from:

cos θ′ =
(b2 − c2) cos θ + 2c sin θζ

b2 + c2
(127)

sin θ′ =
√
1− cos2 θ′ (128)

cosφ′ =
cosφ[(b2 − c2) sin θ − 2c cos θζ] + 2c sinφξ√

(b2 − c2)2 sin2 θ − 4c[(b2 − c2) sin θ cos θζ − c(b2 − sin2 θζ2)]

(129)

sinφ′ =
sinφ[(b2 − c2) sin θ − 2c cos θζ]− 2c cosφξ√

(b2 − c2)2 sin2 θ − 4c[(b2 − c2) sin θ cos θζ − c(b2 − sin2 θζ2)]

(130)

U ′′x ≡ U ′x = U sin θ′ sinφ′ (131)
U ′′y ≡ U ′y = U cos θ′ (132)
U ′′z ≡ U ′z = U sin θ′ cosφ′. (133)

The time of passage at the node, near the epoch of the next encounter, is:

t′′0 = t′0 + h · 2πa′3/2, (134)

and the quantities necessary for its computation are:

t′0 = tb − z′(tb)
U ′z

(135)

tb =
cos θζ − tanφξ

U sin θ
+ t0 (136)

z′(tb) =
2b2c sin θ cosφ + (b2 − c2)(cos θ cosφζ − sinφξ)

b2 + c2
(137)

a′ =
b2 + c2

(b2 + c2)(1− U2)− 2U [(b2 − c2) cos θ + 2c sin θζ]
. (138)

The nodal distance is:
x′′0 = x′(tb)− U ′x(tb − t′0), (139)

with:

x′(tb) =
2b2c sin θ sinφ + (b2 − c2)(cos θ sinφζ + cosφξ)

b2 + c2
. (140)

Finally, the new distance of the planet from the node is:

y′′p = yp − y′0 + δyp, (141)

with:

y′0 = y′(tb)− U ′y(tb − t′0) (142)

y′(tb) =
2b2c cos θ − (b2 − c2) sin θζ

b2 + c2
− ζ − cos θ tanφξ

sin θ
(143)

δyp = −mod[t′′0 − t′0 + π, 2π] + π. (144)
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5 Resonant returns in Öpik’s theory

A given resonance corresponds to a certain value of a′, i.e. of θ′, say a′0 and θ′0.
If the ratio between the period of the planet and that of the small body is h/k,
then:

a′0 = 3

√
k2

h2
(145)

cos θ′0 =
1− U2 − 1/a′0

2U
=

1− U2 − 3
√

h2/k2

2U
. (146)

5.1 Solving for a given final semimajor axis

We have
cos θ′0 = cos θ cos γ + sin θ sin γ cosψ (147)

and, given b, can solve for ψ

cosψ =
(b2 + c2) cos θ′0 − (b2 − c2) cos θ

2bc sin θ
. (148)

Substituting

cosψ =
ζ

b

and
b2 = ξ2 + ζ2,

we can solve for ξ as a function of ζ

ξ2 = −ζ2 +
2c sin θ

cos θ′0 − cos θ
ζ − c2(cos θ′0 + cos θ)

cos θ′0 − cos θ
. (149)

This is the equation of a circle centred on the ζ-axis; if R is the radius of such
a circle, and D the value of the ζ-coordinate of its centre, its equation is

ξ2 = −ζ2 + 2Dζ + R2 −D2; (150)

thus, in our case we have a circle centred in

D =
c sin θ

cos θ′0 − cos θ
(151)

and of radius |R|, with R given by

R =
c sin θ′0

cos θ′0 − cos θ
; (152)

note that R is negative for θ′0 > θ.
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The radius of the circle is zero for θ′0 = 0 and θ′0 = π, and for θ′0 → θ both
D and R tend to infinity:

D =
c sin θ

cos(θ + δθ)− cos θ
→ − c

δθ
(153)

R =
c sin(θ + δθ)

cos(θ + δθ)− cos θ
→ − c

δθ
− c cos θ

sin θ
. (154)

In general, the circle intersects the ζ-axis in

ζ = D ±R =
c(sin θ ± sin θ′0)
cos θ′0 − cos θ

, (155)

that represent the extremal values that b can take; for θ′0 → θ one of the two
intersections tends to infinity, and the other to

D −R = − c

δθ
+

c

δθ
+

c cos θ
sin θ

=
c cos θ
sin θ

. (156)

The circle intersects the ξ-axis in

ξ = ±c

√
(cos θ + cos θ′0)
cos θ − cos θ′0

, (157)

and the maximum value of |ξ| for which a given θ′0 is accessible is

|ξ| ≡ |R| =
∣∣∣∣ c sin θ′0
cos θ′0 − cos θ

∣∣∣∣ . (158)

The maximum value of a accessible for a given U is for θ′0 = 0, and is obtained
for

ζ =
c sin θ

1− cos θ
, (159)

and the minimum value of a is for θ′0 = π, and is obtained for

ζ = − c sin θ

1 + cos θ
; (160)

in both cases for the local MOID we must have Dy = 0.

5.2 Examples

Figure 5 shows the circles corresponding to some relevant mean motion reso-
nances on the b-plane of the October 2028 encounter with the Earth of asteroid
1997XF11, together with the line denoting a stream of fictitious asteroids all hav-
ing the same orbital elements and spaced in mean anomaly. The intersections of
this line with the circle corresponding to a specific resonance give the region of
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Fig. 5. Circles corresponding to the mean motion resonances (top to bottom) 4/7, 1/2,
2/3, 3/5, 7/12, on the b-plane of the October 2028 encounter with the Earth of asteroid
1997XF11. The vertical line represents initial conditions of fictitious asteroids all with
the same orbital parameters as 1997XF11 and spaced in mean anomaly, i.e. in the time
of encounter with the Earth.

the b-plane where the real asteroid has to pass in order to have a ‘resonant re-
turn’, i.e. to be deviated into an orbit of period such that a successive encounter
at the same node, due to the resonance relation, will take place [18] [19].

For the same encounter, and the same resonances, Fig. 6 shows the encounter
outcomes, computed with Öpik’s theory, for a swarm of fictitious asteroids spaced
in mean anomaly. Particularly noticeable in the lower right panel is the sharp
transition between the final orbits of shortest and longest period.

Figure 7 is the equivalent of Fig. 5 for the b-plane of the August 2027 en-
counter with the Earth of asteroid 1999AN10 and, for the same encounter, Fig. 8
is the equivalent of Fig. 6. In this case U is much larger, so that the effects of
the encounter, for the same approach distance, are less noticeable.

6 The distribution of energy perturbations

The heliocentric orbital energy per unit mass of the small body is:

E = − 1
2a

; (161)

thus, it is a function only of U and cos θ:

E =
U2 + 2U cos θ − 1

2
; (162)

cos θ is then

cos θ =
1 + 2E − U2

2U
(163)
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Fig. 6. The outcomes, computed with Öpik’s theory, of the October 2028 encounter
with the Earth of a swarm of fictitious asteroids with the orbital elements of 1997XF11.
Upper right: the swarm in the b-plane; upper left: final states in the a-i plane; lower left:
final states in the a-e plane; lower right: final states in the plane ∆t (difference in time
from closest approach; ∆t = 0 for encounter at the MOID) vs P (post-encounter orbital
period). In all panels a circle marks one extremum of the swarm, to help identifying
the behaviours of the various portions of the swarm.

and sin θ is

sin θ =

√
1−

[
1 + 2E − U2

2U

]2
=

√
C(E)
2U

, (164)

having put
C(E) = −4E2 − 4(1− U2)E − 1 + 6U2 − U4. (165)

For a given U , E behaves like a: it is maximum for θ = 0, its value being:

Emax =
U2 + 2U − 1

2
(166)
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Fig. 7. Same as Fig. 5 for the b-plane relative to the August 2027 encounter with
the Earth of asteroid 1999AN10. In this case the circles are for the resonances (top to
bottom) 7/13, 10/17, 11/19.

and minimum for θ = π, its value being:

Emin =
U2 − 2U − 1

2
; (167)

note that, correspondingly, for θ = 0

C(E) = 0 (168)

and for θ = π
C(E) = 0. (169)

In fact, C(E) can be written as

C(E) = −4[E2 − (Emax + Emin)E + EminEmax]. (170)

For given U and θ, i.e. for given U and E, the circles in the b-plane leading to a
given E′0 are characterized by

D =
c
√

C(E)
2(E′0 − E)

(171)

R =
c
√

C(E′0)
2(E′0 − E)

. (172)

Expressing the circles in terms of ξ and ζ, we have:

ξ2 = −ζ2 + 2Dζ + R2 −D2

= −ζ2 +
c
√

C(E)
E′0 − E

ζ +
c2 [C(E′0)− C(E)]

4(E′0 − E)2
. (173)
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Fig. 8. Same as Fig. 6 for the August 2027 encounter with the Earth of asteroid
1999AN10.

It is clear that two circles, relative to two different values E′1 and E′2 of the
final energy, must be contained one within the other, as they cannot intersect:
if they did, the intersection points would lead to two different values of the
post-encounter energy, that is clearly impossible. Therefore, the value of the
energy perturbation distribution for the interval between E′1 and E′2 must be
proportional to the difference between the areas of the two relevant circles on
the b-plane [25]:

∫ E′2

E′1

f(E′)dE′ ∝ c2C(E′1)
4(E′1 − E)2

− c2C(E′2)
4(E′2 − E)2

= −c2[E′1
2 − (Emax + Emin)E′1 + EminEmax]

(E′1 − E)2

+
c2[E′2

2 − (Emax + Emin)E′2 + EminEmax]
(E′2 − E)2

; (174)
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this expression must be corrected when the circles intersect the circle centred on
the planet of radius B, where B is a suitably defined radius of action, beyond
which the applicability of Öpik’s theory of close encounters becomes question-
able.

Here follows an explicit expression for the area S of the circle as a function
of the initial energy E, the final one E′, and its minimum and maximum allowed
values Emin and Emax:

S =
πc2C(E′)
4(E′ − E)2

= −πc2[E′2 − (Emax + Emin)E′ + EminEmax]
(E′ − E)2

. (175)

6.1 Energy perturbations for a given MOID

For a stream of objects on the same orbit, whose encounters with the planet differ
only for the position of the latter at the time of node crossing, the positions on
the b-plane are along the straight line

ξ0 = x0 cosφ, (176)

where x0 cosφ is the value of the MOID, with the values of ζ comprised between,
say, ζ1 and ζ2. For a point of coordinates (ξ0,ζ), we have

b =
√

ξ20 + ζ2 (177)

cosψ =
ζ√

ξ20 + ζ2
, (178)

so that

cos θ′ =
cos θζ2 + 2c sin θζ + (ξ20 − c2) cos θ

ζ2 + ξ20 + c2
(179)

and

E′ = E +
2Uc(sin θζ − c cos θ)

ζ2 + ξ20 + c2
. (180)

7 Geocentric variables to characterize meteor orbits

Meteoroid streams are composed of small particles released from comets and
from some Earth-crossing asteroids. We see individual meteoroids because their
orbits cross that of the Earth, so that they can penetrate in the atmosphere and
burn, producing an observable meteor. As these particles are released from their
parent bodies at very low relative velocity, initially their orbits do not differ
very much from those of their parents. Moreover, because of the Earth-crossing
condition, we expect their dynamics to be chaotic.
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The problem of identifying meteoroid streams is similar to that of the identifi-
cation of asteroid families: we have to measure the differences between the orbits
of potential family/stream member by a suitably defined distance function, and
assess the statistical significance of the groupings obtained in this way.

If the asteroid/meteoroid, after having separated from the parent, were or-
biting the Sun in absence of any perturbation, it would continue to do so forever,
and its orbital elements would bear a perennial memory of its origin. This is of
course not the case in reality, and leads to an important difference between the
problems of asteroid families and of meteoroid streams.

In fact:

• asteroid orbits have very little chaoticity, if any, and allow the calculation of
‘proper elements’, i.e. quasi-integrals of motion stable over Myr to possibly
Gyr;
• meteoroid orbits are strongly chaotic, as they cross the orbit of at least one
planet (the Earth), and often those of many others.

Therefore, while the timescales over which asteroid families remain recogniz-
able are of the order of the age of the solar system, meteoroid streams can be
recognized for much shorter time spans, typically of order 103 ÷ 104 yr.

Figure 9 shows the radiants, i.e. the points on the celestial sphere from which
the meteor arrives, for 865 precisely measured photographic meteors, in a frame
comoving with the Earth, with the Sun on the left. Most orbits are on the
upper right of the plot because these are meteors were observed at night in
the Northern hemisphere. The concentrations due to some well known meteor
streams are easily recognizable.

7.1 An orbital similarity criterion based on geocentric quantities

To classify meteors in streams the standard tool is the orbital similarity criterion
originally formulated by Southworth and Hawkins [22], involving the five orbital
parameters that describe the orbit (note that q, the perihelion distance, is used
instead of a, that is not alway well determined for meteor orbits):

D2
SH = [e2 − e1]2 + [q2 − q1]2 +

[
2 sin

I21
2

]2

+
[(

e2 + e1
2

)(
2 sin

π21
2

)]2
(181)

where
[
2 sin

I21
2

]2
=
[
2 sin

i2 − i1
2

]2
+ sin i1 sin i2

[
2 sin

Ω2 −Ω1

2

]2
(182)

and

π21 = ω2 − ω1 + 2arcsin
[
cos

i2 + i1
2

sin
Ω2 −Ω1

2
sec

I21
2

]
. (183)
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Fig. 9. The radiants of 865 precise photographic meteors in a Hammer-Aitoff equal
area projection of the sky, in a system rotating with the Earth about the Sun (here
the Earth’s orbit is assumed to be circular). The figure is centred in the direction
of the motion of the Earth; lines of constant ecliptic latitude B are drawn for B =
0◦,±15◦,±30◦,±45◦,±60◦,±75◦ and of constant ecliptic longitude relative to that of
the Sun L − L� for L − L� = 0◦,±30◦,±60◦,±90◦,±120◦,±150◦. The Sun is at
L− L� = −90◦, B = 0◦.

When meteors hit the Earth at the ascending node we have

ω + f = 0◦ → f = −ω, (184)

when this happens at the descending node

ω + f = 180◦ → f = 180◦ − ω; (185)

in both cases, we have that r = 1 AU, implying that, at the ascending node,

1 =
a(1− e2)

1 + e cos (−ω)
(186)

and at the descending node

1 =
a(1− e2)

1 + e cos (180◦ − ω)
. (187)

Therefore, because of the Earth-crossing condition, that involves a, e and ω,
a meteor orbit is characterized by only 4 independently measurable quantities.
Thus, the identification problem has really only 4 dimensions, while the criterion
by Southworth and Hawkins is 5-dimensional; does there exist a suitable set of
4 variables that would allow meteor stream identification in a ‘natural’ way?
And, if so, would not it be better if these variables were directly deducible from
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observed quantities, without having to derive the orbital elements? Note that
the latter, that are necessary to compute DSH , are the conserved quantities of
the simplest problem of celestial mechanics, the 2-body problem.

Let us reconsider a meteor fall on the Earth. Its date and time give us Ω of
the meteoroid’s orbit since, if the the fall takes place at the ascending node, we
have

Ω = λ⊕, (188)

and if it takes place at the descending node we have

Ω = λ⊕ + 180◦. (189)

We need three more quantities to completely characterize the orbit, and we do
not want to use a, e, i, ω because they are 4 quantities related by a constraint.

The geometric setup of Öpik’s theory suggests us the natural choice: U , θ
and φ.

What do these variables represent in terms of mentor observables? U is of
course the modulus of the geocentric unperturbed velocity, while θ and φ define
the direction opposite to the one from which the meteor is seen to arrive, i.e.
opposite to the geocentric radiant. So, U , θ and φ are obtained from the directly
measurable quantities that characterize an observed meteor.

In Fig. 10 we re-plot the same meteors of Fig. 9, but this time with a grid of
given values of θ and φ, instead of L − L� and B, so as to allow the reader to
get an idea of where orbits of given θ, φ are located in the diagram.

Using the same grid, we can plot also the radiants of Apollo asteroids (those
with a > 1 and q < 1), Aten asteroids (a < 1) and comets having at least a node
between 0.95 and 1.05 AU, so that the similarities and differences between the
distribution of meteor radiants, and that of their potential parent bodies, can
be appreciated.

Using U , θ and φ [24] have defined a new criterion for the similarity of meteor
orbits:

D2
N = [U2 − U1]2 + w1[cos θ2 − cos θ1]2 + ∆Ξ2 (190)

where

∆Ξ2 = min
[
w2∆φ2

I + w3∆λ2I , w2∆φ2
II + w3∆λ2II

]
(191)

∆φI =
[
2 sin

φ2 − φ1

2

]
(192)

∆φII =
[
2 sin

180◦ + φ2 − φ1

2

]
(193)

∆λI =
[
2 sin

λ2 − λ1
2

]
(194)

∆λII =
[
2 sin

180◦ + λ2 − λ1
2

]
(195)

and w1, w2, w3 are suitably defined weighting factors; note that ∆Ξ is small
either if both φ1 − φ2 and λ1 − λ2 are small, or if they are both close to 180◦.
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Fig. 10. Same as Fig. 9; the lines here correspond (from the center outwards) to θ =
150◦, 120◦, 90◦, 60◦, 30◦, and (from the vertical one in the upper part of the figure,
going clockwise) to φ = 180◦, 210◦, 240◦, 270◦, 300◦, 330◦, 0◦, 30◦, 60◦, 90◦, 120◦,
150◦.
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Fig. 11. The radiants of Apollo asteroids (large open circles), Aten asteroids (small
open circles) and comets (full dots) having at least a node between 0.95 and 1.05 AU,
in the same projection of the sky of Fig. 10. Note that close to the centre of the figure
there are only comets and Atens, while Apollos avoid that region and fill up, together
with comets, all the rest of the diagram. There are noteworthy concentrations of Apollo
radiants in the directions towards and away from the Sun.
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This allows to recognize as members of the same stream meteors observed at
node crossings separated by 6 months (e.g. the Orionids and the η Aquarids).

The effectiveness of DN for the identification of meteoroid streams was tested
by applying it to a suitable set of meteor data, and comparing its results to those
obtained with DSH [14]. The data used comprised 865 precise orbits taken from
the IAU Meteor Data Center files; these orbits are of 139 small-camera meteors
[27], of 413 Super Schmidt meteors [12], and of 313 Super Schmidt meteors [10]
[11]. The groupings were obtained by a single neighbour linking algorithm [17]
not requiring any a priori knowledge of stream orbits, and the thresholds for
DSH and DN were determined by comparison with random samples having the
same marginal distributions of the variables [13], in order to have a reliability
level of 99%.

The comparison between the classifications made with DSH and DN gave
the following results [14]:

• 15 streams were identified both by DSH and by DN ;
• 6 streams (κ Cygnids, Quadrantids, Geminids, Southern δ Aquarids, Dra-
conids and Cyclids) showed identical memberships in the two cases;
• for the Orionids the membership was also identical, but DN failed to identify
as belonging to the same stream an η Aquarid meteor;
• for 7 streams (Lyrids, α Capricornids, Perseids, Taurids, Leonids, σ Hydrids
and α Pegasids) DN was able to add a few more members, and for the χ Ori-
onids DN was able to add many more members, to those identified by DSH ;

• two streams were identified only with DSH (σ Leonids and Andromedids);
• five streams were identified only with DN (ε Geminids, Monocerotids, α Vir-
ginids, Northern δ Aquarids and ε Piscids);
• DN detected a single Southern α Capricornid, and the Northern branch of the

χ Orionids, both missed by DSH ;
• of the streams identified only by DN two, the α Virginids and the ε Piscids,
are near-ecliptical and possess a Northern and a Southern branch;
• the two streams identified by DSH and not by DN possess a Northern and a
Southern branch.

Thus, DSH and DN gave essentially equivalent classifications for streams of
moderate to high inclination, while for near-ecliptical streams the memberships
disagreed significantly in some cases.

7.2 Secular invariance of U and θ

Many factors influence the dynamical evolution of meteoroid streams, and some
of them are due to forces other than gravitation. However, over not too long
timescales, and in absence of planetary close encounters, we can assume that
only secular perturbations affect meteoroid orbits. The most important secular
perturbation in the meteoroid stream case is the one related to the cycle of
ω, first described by Kozai [16]. Assuming that all the planets are on circular
coplanar orbits, and that the small body orbit is far from mean motion and
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secular resonances, it leaves invariant the z-component of the orbital angular
momentum:

Lz =
√

a(1− e2) cos i (196)

and the orbital energy:

E = − 1
2a

; (197)

therefore,

T =
1
a
+ 2
√

a(1− e2) cos i = 2(Lz − E) (198)

is constant, and so is U . But then, if a and U are conserved, so is θ, since:

cos θ =
1− U2 − 1/a

2U
. (199)

The secular invariance of U and cos θ suggests that they can be of some use to
identify, as possibly being originated from the same parent body, streams that
are on orbits of different e, i, ω and Ω, due to secular perturbations [14].
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Fig. 12. The positions of 865 precisely measured photographic meteor orbits in the
plane U -cos θ. The straight line going from (0,0) to (2,-1) is the locus of orbits with
a = 1 AU, while the curve from the upper left to the lower right is the locus of orbits
with a = inf; the remaining curve is the locus of orbits with Lz = 0.

In fact, if we compare the positions of photographic meteor orbits in the
plane U -cos θ (Fig. 12) with those of known near-Earth asteroids and comets
in the same plane (Fig. 13), we can immediately notice that, except for some
overlapping in a limited region of the diagram, asteroids and comets tend to
reside in different regions of this diagram. In practice this means that the knowl-
edge of just U and θ of a meteor orbit, something immediately deducible from
observations, without the need to compute the orbital elements, allows in most
cases to guess whether the parent body is on an asteroidal or a cometary orbit.
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Fig. 13. The positions of Apollo, Aten and Amor asteroids (open circles) and comets
(dots) in the plane U -cos θ. Note that comes and asteroids overlap only on a limited
region of the diagram.
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Generalized Averaging Principle
and Proper Elements for NEAs

Giovanni-Federico Gronchi
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Abstract. We present a review of the results concerning a generalization of the clas-
sical averaging principle suitable to deal with orbit crossings, that make singular the
Newtonian potential at the values of the anomalies corresponding to collisions. These
methods have been applied to study the secular evolution of Near Earth Asteroids and
to define proper elements for them, that are useful to study the possibility of impact
between these asteroids and the Earth.

1 Introduction

The averaging principle is a powerful tool to study the qualitative behavior of
the solutions of Ordinary Differential Equations. It consists in solving averaged
equations, obtained by an integral average of the original equations over some
angular variables; if some conditions are satisfied the solutions of the averaged
equations remain close to the solutions of the original equations for a long time
span. A review of the classical results on averaging methods in perturbation
theory can be found in [1].

These methods have been used to study the secular evolution of the Main
Belt Asteroids (MBAs) starting from [26], see [11],[22],[15] .

On the other hand in the case of Near Earth Asteroids (NEAs) the inter-
sections between the orbits of the asteroid and those of the planets generate
singularities in the Newtonian potential corresponding to the collision values of
the phases on their orbits: in this case the averaged equations have no meaning.

In 1998 Gronchi and Milani [8] have defined piecewise differentiable solutions
that can be regarded as solutions of the averaged equations in a weak sense: they
solve slightly modified averaged equations in which an inversion of the integral
and differential operators occurs. These equations correspond to the classical
averaged equations when there are no crossings between the orbits.

The eccentricity and the inclination of the Solar System planets are not con-
sidered in this framework: this simplification gives rise to some nice properties,
like the periodicity of the solutions of the averaged equations with respect to the
perihelion argument, and it allows to prove a stability property [9].

Using the generalized averaging principle Gronchi and Milani [10] computed
proper elements and proper frequencies for all the known NEAs using the
NEODyS database of orbits (http://newton.dm.unipi.it/neodys/). The related
catalog is continuously updated according to the discovery of new asteroids and
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to the changes in the orbits of the known ones: it can be found at the web address
http://newton.dm.unipi.it/neodys/propneo/catalog.tot .

The reliability of these solutions has been tested by a comparison with the
outputs of pure numerical integrations [7] and the results are quite satisfactory.

Recently this generalized averaging theory has been extended to the eccen-
tric/inclined case for the planets [5]; this will allow to define more reliable cross-
ing times between the orbits, that are useful to detect the possibility of collisions.

In this paper we shall review the classical averaging principle for non crossing
orbits and we shall describe in all details the generalization of the principle when
a crossing occurs in the case with the planets on circular coplanar orbits. Then we
shall present an application of the generalized principle to compute the secular
evolution of NEAs and proper elements for them. Finally two short sections are
devoted to discussions on the reliability of the averaged orbits and to the recent
work that extends the averaging theory including the eccentricity and inclination
of the planets.

2 The classical averaging principle

First we shall write canonical equations of motion to compute the time evolution
of the orbit of an asteroid. Then we shall describe the averaged equations for
the evolution of asteroids that do not cross the orbits of the planets.

2.1 The full equations of motion

Let us consider a Solar System model with the Sun, N − 2 planets and an
asteroid: we assume that the mass of the asteroid is negligible, so that we have
a restricted problem. We also suppose that the masses of the planets are small if
compared with the mass of the Sun, so that we have N − 2 small perturbative
parameters µi, i = 1 . . . N − 2, corresponding to the ratio of the mass of each
planet with the mass of the Sun.

We assume that the motion of the planets is completely determined and that
there are no collisions among them or with the Sun. With these assumptions we
write the full equations of motion for the asteroid in Hamiltonian form.

We use heliocentric Delaunay’s variables for the asteroid, defined by


L = k

√
a

G = k
√
a(1− e2)

Z = k
√
a(1− e2) cos I

{

 = n(t− t0)
g = ω
z = Ω

where {a, e, I, ω,Ω, 
} is the set of the Keplerian elements, k is Gauss’s constant,
n is the mean motion and t0 is the time of passage at perihelion.

Delaunay’s variables , like the Keplerian elements, describe the evolution of
the osculating orbit of the asteroid, that is of the trajectory that the asteroid
would describe in a heliocentric reference frame, given its position and velocity
at a time t, if only the Sun were present. For negative values of the Keplerian
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energy of the asteroid the osculating orbits are ellipses; we shall consider only
such cases.

The Hamiltonian can be written as

H = − k2

2L2 −R

where −k2/(2L2) is the unperturbed term, describing the two body motion of
the asteroid around the Sun, and R is the perturbing function defined by

R =
N−2∑
i=1

µiRi ; Ri = k2
[

1
|x− xi| −

< x, xi >

|xi|3
]

; i = 1 . . . N − 2 (1)

in which 〈 , 〉 is the Euclidean scalar product and x and xi are the position vectors
of the asteroid and of all the planets in a heliocentric reference frame.

Note that each Ri is the sum of a direct term k2/|x − xi|, due to the direct
interaction between the planet i and the asteroid, and an indirect term −k2 <
x, xi > /|xi|3, representing the effects on the motion of the asteroid caused by
the interaction between the Sun and the planet i.

If we set ED = (L,G,Z, 
, g, z) we can write Hamilton’s equations as

ĖD = J (∇EDH) t (2)

where the dot means derivative with respect to time, J is the 6× 6 matrix
[O −I3
I3 O

]

composed by 3× 3 zero and identity matrixes, and

(∇EDH) t =
(
∂H

∂ED

)t

is the transposed vector of the partial derivatives of the Hamiltonian H with
respect to ED.

2.2 The averaged equations

The classical averaging principle consists in solving equations obtained by the in-
tegral average of the right hand side of (2) over the mean anomalies 
, 
1, .., 
N−2
of the asteroid and the planets.

This method can be applied to study the qualitative behavior of the orbits
of the MBAs, that do not cross the orbits of the Solar System planets during
their evolution, assuming that no mean motion resonances with low order occur
between the asteroid and the planets in the model. This means that there exists
ε > 0 not too small and a positive integer M not too large such that for each
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pair (a(t), ai(t)), composed by the semimajor axes of the osculating orbits of the
asteroid and the planet i (i = 1 . . . N − 2) we have∣∣∣ p [a(t)]3/2 − q [ai(t)]

3/2
∣∣∣ > ε

for each pair of positive integers p, q ≤M and for each t in the considered time
span.

Remark 1. As our purpose is not a study of the structure of the mean motion
resonances we shall not give further details or any estimates on the size of ε and
M .

In the expression of the perturbing function (1) the effect of each planet is
independently taken into account: each Ri is a function of the coordinates and
the masses of the asteroid and one planet only. We shall study the case of only
one perturbing planet and we shall use a prime for the quantities related to this
planet: the perturbation of all the planets, up to the first order in the perturbing
masses µi, will be obtained by the sum of the contribution of each planet.

If we consider the reduced set of Delaunay’s variables ED = (G,Z, g, z) the
averaged equations for the asteroid can be written in the following form:

˙̃
ED = −J ∇EDR

t
(3)

where ẼD = (G̃, Z̃, g̃, z̃) are averaged Delaunay’s variables, J is the 4×4 matrix[O −I2
I2 O

]

composed by 2×2 zero and identity matrixes, and ∇EDR
t

is the transposed vec-
tor of the integral average over (
, 
′) of the partial derivatives of the perturbing
function R with respect to ED

∇EDR =
1

(2π)2

∫ π

−π

∫ π

−π
∇EDRd
 d
′ ; ∇EDR =

∂R

∂ED
.

Remark 2. As we are considering non–crossing orbits, the derivatives of R with
respect to Delaunay’s variables are regular functions and we can use the theorem
of differentiation under the integral sign [3] to exchange the derivatives and the
integrals in (3); then the averaged equations take the form

˙̃
ED = −J (∇EDR)

t
(4)

where

R =
1

(2π)2

∫ π

−π

∫ π

−π
Rd
 d
′ =

1
(2π)2

∫ π

−π

∫ π

−π

µk2

|x− x′| d
 d

′ (5)

(µ is the ratio between the mass of the planet and the mass of the Sun) because
the average of the indirect term of the perturbing function is zero (see [26]).
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Remark 3. We shall skip the ‘tilde’ over the averaged variables in the following
to avoid the use of heavy notations.

We stress that the solutions of (3) are representative of the solutions of the
full equations of motion only if there are no mean motion resonances with low
order between the asteroid and the planet.

2.3 Difficulties arising with crossing orbits

We say that an asteroid is planet crossing if its orbit crosses the orbit of some
planet during its secular evolution.

When we consider a planet crossing asteroid at the time of intersection of
the orbits, the averaged perturbing function R is the integral of an unbounded
function that is convergent because 1/|x− x′| has a first order polar singularity
in the values 
, 


′
corresponding to a collision. The derivatives at the right hand

side of (3) have second order polar singularities in 
, 

′
, hence equations (3) do

not make sense in this case because the integrals over 
, 
′ of these derivatives
are divergent and the classical averaging principle cannot be applied.

3 Generalized averaging principle
in the circular coplanar case

We present the ideas of the generalization of the averaging principle to the case
of crossing orbits, assuming that all the planets in the model have circular and
coplanar orbits (see [13]) and that no low order mean motion resonances are
present.

The natural choice for a heliocentric reference frame is then a system Oxyz
with the (x, y)-plane corresponding to the common orbital plane of all the plan-
ets, oriented in such a way that the planets have positive z component of the
angular momentum with respect to the origin O.

3.1 Geometry of the node crossing

We assume that the inclination between the osculating orbit of the asteroid with
respect to the orbital plane of the planets is different from zero during its whole
evolution; then it is possible to define, for all times, the mutual nodal line, repre-
senting the intersection of the two orbital planes of the asteroid and the planets.

Let us consider one planet at a time: we give the following

Definition 1. We call mutual node each pair of points on the mutual nodal
line, one belonging to the orbit of the asteroid and the other to the one of the
planet, that lie on the same side of the mutual nodal line with respect to the
common focus of the two conics. For each planet in this model there are two
mutual nodes, the ascending and the descending one: they differ in the change
of sign of the z component along the asteroid orbit (negative to positive in the
first case and vice-versa in the second).
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We say that an ascending (resp. descending) node crossing occurs when the
orbit of the asteroid intersects the orbit of a planet at the ascending (resp.
descending) mutual node, that in this case becomes a set of two coinciding
points.

Unless the inclination of the asteroid never vanishes, the only way to have
orbital intersection is a node crossing. In the following we give a description of the
possible geometric configurations of node crossings in the plane (e cosω, e sinω).

Recall that an ascending and descending node crossing with a planet whose
orbit has semimajor axis a′i is characterized by the vanishing of the following
expressions respectively:

d+nod(i) =
a(1− e2)

1 + e cosω
− a′i ; d−nod(i) =

a(1− e2)
1− e cosω

− a′i (6)

that are called nodal distances (and can be negative).
In the averaged problem with the planets on circular coplanar orbits we have

three integrals of motions: the semimajor axis a, the Kozai integral H = H0−R
(that is the averaged Hamiltonian) and the z-component of the angular momen-
tum Z = k

√
a(1− e2) cos I. The Z integral allows to determine the evolution

of I(t) if we know e(t); if we also know ω(t) we can determine Ω(t) by a sim-
ple quadrature of ∂R/∂Z, that does not depend on Ω. From the expression of
the integral Z we deduce the maximum value of the averaged inclination and
eccentricity:

Imax =I
∣∣
e=0= arccos

Z

k
√
a

; emax =e
∣∣
I=0=

√
k2a− Z2

k
√
a

.

For a given value of the semimajor axis a we can represent the level lines of
the averaged Hamiltonian, on which the averaged solutions evolve, in the plane
(ξ, η) := (e cosω, e sinω). We define the Kozai domain

W = {(ξ, η) : ξ2 + η2 ≤ e2max} ,
where the averaged dynamics is confined.

In the (ξ, η) reference plane the node crossing lines with the planets are
circles: they are defined by

Γ+(i) = {(ξ, η) : d+nod(i) = 0} ; Γ−(i) = {(ξ, η) : d−nod(i) = 0}
where i is the index of the planet.

At the ascending node crossing with the planet i the equation to be considered
is

1− ξ2 − η2 =
a′i
a

(1 + ξ) .

After the coordinate change X = ξ + a′i/(2a); Y = η we obtain

X2 + Y 2 =
(

1− a′i
2a

)2

,
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Fig. 1. The Kozai domain {(e cosω, e sinω) : 0 ≤ e ≤ emax, ω ∈ R} is represented
in the figure by the set W . We plot also the four circles corresponding to ascending
and descending node crossing with two planets (they have their centers shifted respec-
tively on the left and on the right). An additional exterior circle corresponding to the
boundary for closed orbits (e = 1) is drawn.

that is, in the (ξ, η)-plane, the equation of a circle of radius R+
i = 1 − a′i/(2a),

with center in (ξ+, η+) =
(−a′i/(2a), 0

)
(see Fig. 1).

By the previous calculations we have


d+nod(i) > 0 inside Γ+(i)

d+nod(i) < 0 outside Γ+(i) .

In a similar way we can prove that the equation d−nod(i) = 0 represents a
circle of radius R−i = R+

i = 1−a′i/(2a), with center in (ξ−, η−) =
(
+a′i/(2a), 0

)
.

Definition 2. A double (node) crossing is a crossing between the orbit of the
asteroid and the orbit of a planet at both the ascending and descending node.

By the symmetry of the circles {d+nod(i) = 0} and {d−nod(i) = 0}, for each
index i, we can deduce that a double crossing is possible only when ω = π/2
or ω = 3π/2 (see Fig. 1). We obtain the following condition on the ratio of the
semimajor axes a, a′i:

− a′i
2a
≥ −1

2
that is a ≥ a′i , (7)
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and in particular we obtain that there cannot exist Aten asteroids (see the first
chapter by A. Celletti, in this book) that have a double crossing with the Earth.

Definition 3. A simultaneous crossing is a crossing of the orbit of the asteroid
and the orbits of two planets at the same time.

We note that if we call a′1, a
′
2 the semimajor axes of the orbits of two different

planets, we cannot have a simultaneous crossing at the ascending node of both
planets (this would imply a′1 = a′2 in this model). By a similar argument we
cannot have a simultaneous crossing at the descending node of both planets. On
the other hand we can have a simultaneous crossing at the ascending node with
one planet and at descending node with the other one if

a′1 =
a(1− e2)

1 + e cosω
and a′2 =

a(1− e2)
1− e cosω

,

that is if
a′1
a′2

=
1− e cosω
1 + e cosω

.

In this framework we cannot have crossings of different type from the ones
presented above (like triple crossing, etc.).

3.2 Description of the osculating orbits

We consider a model with three bodies only: Sun, planet, asteroid. We set the
x axis along the line of the nodes, pointing towards the ascending mutual node.
The equations defining the osculating orbits P (u) = (p1(u), p2(u), p3(u)) and
P ′(u′) = (p′1(u′), p′2(u′), p′3(u′)) of the asteroid and the planet are



p1 = a[(cosu− e) cosω − β sinu sinω]
p2 = a[(cosu− e) sinω + β sinu cosω] cos I
p3 = a[(cosu− e) sinω + β sinu cosω] sin I



p′1 = a′ cosu′

p′2 = a′ sinu′

p′3 = 0
(8)

where u, u′ are the eccentric anomalies and β =
√

1− e2. These orbits are re-
spectively an ellipse and a circle.

The distance between a point on an orbit and a point on the other one,
appearing at the denominator of the direct term of the perturbing function, is
defined by its square as

D2(u, u′) = (p1 − p′1)2 + (p2 − p′2)2 + (p3 − p′3)2 =
a2(1− e cosu)2 + a′2 − 2aa′

{
cosu′[(cosu− e) cosω − β sinu sinω] +

+ sinu′ cos I[(cosu− e) sinω + β sinu cosω]
}
.

We introduce the function D(
, 
′), which is implicitly defined by

D (
(u), 
′(u′)) = D(u, u′) (9)
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and by Kepler’s equations


 = u− e sinu ; 
′ = u′ (10)

for the asteroid and the planet (the latter has a simpler form because the orbit
of the planet is circular).

We define the values of the anomalies u, u′ corresponding to the mutual
ascending node: we immediately notice that u′ = 0, while from

a(1− e cosu) =
aβ2

1 + e cosω
(11)

we obtain
cosu =

cosω + e

(1 + e cosω)
; sinu = − β sinω

(1 + e cosω)

(the sign of sinu has been chosen in such a way that it is opposite to the sign of
sinω).

The equations defining the anomalies u1, u
′
1, corresponding to the mutual

descending node, are

u′1 = π ; cosu1 =
e− cosω

(1− e cosω)
; sinu1 =

β sinω
(1− e cosω)

.

In the following we shall study only ascending node crossings, but the same
methods are suitable to deal also with the descending ones and even with double
crossings (see [6],[10]).

3.3 Weak averaged solutions

The idea of the generalization of the averaging principle comes from Remark
2: if there are no crossings between the orbits, then the averaged equations of
motion (3) are equivalent to equations (4).

We write equations (4) in a more explicit form:



˙̃
G =

∂R

∂g

˙̃
Z =

∂R

∂z
= 0




˙̃g = −∂R
∂G

˙̃z = −∂R
∂Z

;

(12)

the equation ˙̃
Z = 0 holds because the equations of the orbits do not depend on

the longitude of the node Ω.
We shall prove that when the orbits intersect each other it is possible to

define piecewise smooth solutions of equations (12), that we call weak averaged
solutions, and we shall see that the loss of regularity corresponds exactly to the
crossing configurations of the orbits: in fact we shall give a twofold meaning to
the right hand sides of (12) at the node crossing, corresponding to the two limit
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values of the derivatives coming from inside and outside the circle representing
the ascending node crossing with the planet in the plane (ξ, η).

Note that the weak averaged solutions correspond to the classical averaged
solutions as far as their trajectories in the reduced phase space (ξ, η) do not pass
through a node crossing line.

We also observe that the exchange of the differential and integral operators in
(12) is not essential for a theoretical definition of the weak solutions (they could
anyway be defined as the limits of the solutions of (3) coming from both sides
of the node crossing lines) but, as we shall see, this operation is necessary to
obtain analytic formulas for the discontinuity of the average of the derivatives of
R, that are not defined on the node crossing lines, and to define the semianalytic
procedure to compute the weak solutions.

3.4 The Wetherill function

Let {P (u), P ′(u′)} be the ascending mutual node. We consider the two straight
lines r(
) and r′(
′), tangent in P (u) and P ′(u′) to the orbits of the asteroid and
of the planet (see Fig. 2); they can be parametrized by the mean anomalies 
, 
′

so that P (u(t)) and r(
(t)) have the same velocities (derivatives with respect to
t) in P (u) and P ′(u′(t)) and r′(
′(t)) have the same velocities in P ′(u′):



r1 = x−F(
− 
)
r2 = y + G cos I(
− 
)
r3 = z + G sin I(
− 
)



r′1 = x′

r′2 = y′ + a′(
′ − 

′
)

r′3 = z′
(13)

where 
, 

′

are the values of the mean anomalies corresponding to u, u′ (so that


′

= 0). We have used the following notations

F =
ae sinω

β
; G =

a(1 + e cosω)
β

and

x =
aβ2

1 + e cosω
; x′ = a′; y = z = y′ = z′ = 0 .

Definition 4. We call Wetherill function the approximated distance function
d, whose square is defined by

d2(
, 
′) = (r1 − r′1)2 + (r2 − r′2)2 + (r3 − r′3)2 =

= a′2k′2 +
a2(1 + 2e cosω + e2)

β2
k2 − 2kk′[Ga′ cos I]− 2d+nodFk + (d+nod)

2

with k = 
− 
, k′ = 
′.
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Sun

perihelion

asteroid

r

r’

planet

nodal line

z

x

y

Fig. 2. The straight lines r, r′ represent Wetherill’s approximation at the ascending
node for the two osculating orbits of the asteroid and the planet.

Note that d2 is a quadratic form in the variables k, k′: it is homogeneous
when there is a crossing at the ascending node. We can write it more concisely
as

d2(
, 
′) = d2(κ) = κtAκ + Btκ + (d+nod)
2

where

κ = (k′, k) ; B = 2(B1, B2) ; A =
[
A11 A12
A21 A22

]
;

with components

{
B1 = 0
B2 = −d+nodF



A11 = a′2

A12 = A21 = −Ga′ cos I
A22 = [F2 + G2] .

For later use we define

d2(u, u′) = d2(
(u), 
′(u′)) .

The geometry of Wetherill’s straight lines is strictly related to the degeneracy
of the matrix A, in fact we have
Lemma 1. The matrix A is always positive definite if I > 0. If I = 0 we have
degeneracy of A if and only if the straight lines r, r′ are parallel: in this case A
is positive semi-definite.

Proof. A is a symmetric 2× 2 matrix and it is positive definite if and only if its
principal invariants, the trace tr(A) and the determinant det(A), are positive.
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By a direct computation we have


tr(A) = a′2 + a2

(1 + 2e cosω + e2)
1− e2

det(A) =
a2a′2

(1− e2)

{
(1 + e cosω)2 sin2 I + e2 sin2 ω

}
.

From the above expressions we deduce that tr(A) > 0 (we are considering only
bounded orbits, so that 0 ≤ e < 1); furthermore

det(A) = 0 ⇐⇒
{
I = 0
e sinω = 0 ,

that corresponds to the straight lines r, r′ being parallel.

Definition 5. We call tangent crossings the crossing orbital configurations for
which det(A) = 0.

The assumption that the inclination I of the asteroid is different from zero
during its whole time evolution implies that no tangent crossings occur.

3.5 Kantorovich’s method

We shall describe Kantorovich’s method of singularity extraction (see [2]) that
allows to improve the stability of the numerical computation of the integrals
when the integrand function f1(x) is unbounded in the neighborhood of one or
more points.

Kantorovich’s method consists in searching for a function f2(x) whose prim-
itive has an analytic expression in terms of elementary functions and such that
the difference f1(x)−f2(x) is more regular than f1(x) (for example it is bounded
or even continuous).

It is then convenient to split the computation as follows∫
f1(x) dx =

∫
[f1(x)− f2(x)] dx +

∫
f2(x) dx

so that the singularity has moved to the second term, that can be better handled.
This method can help us to study the regularity properties of the averaged

perturbing function R defined in (5); we shall use the inverse of the Wetherill
function 1/d to extract the principal part from the direct term of the perturbing
function.

The function D is 2π-periodic in both variables 
, 
′ and this property can be
used to shift the integration domain

T
2 = {(
, 
′) : −π ≤ 
 ≤ π,−π ≤ 
′ ≤ π}

in a suitable way, so that the crossing values (
, 0) will be always internal points
of this domain.
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We shall prove that in computing the derivatives of R with respect to the
variables ED, for instance the G-derivative, we can use the decomposition

(2π)2

µk2
∂

∂G
R =

∫
T2

∂

∂G

[
1
D
− 1

d

]
d
 d
′ +

∂

∂G

∫
T2

[
1
d

]
d
 d
′; (14)

namely we shall prove the validity of the hypotheses of the theorem of differenti-
ation under the integral sign to exchange the symbols of integral and derivative
in front of the remainder function 1/D−1/d . The average of the remainder func-
tion is then differentiable as it is derivable with continuity with respect to all the
variables ED. Therefore we shall need only to study the regularity properties of
the last term of the sum in (14), which is easier to handle.

Note that we use Kantorovich’s method of singularity extraction in a wider
extent: the derivatives of the remainder function still have a polar singularity in
(
, 0), but it is of order one, so that the integrals over 
, 
′ of these derivatives
are convergent.

3.6 Integration of 1/d

We shall discuss the analytic method to integrate 1/d over the unshifted domain
T
2 = {(
, 
′) : −π ≤ 
 ≤ π,−π ≤ 
′ ≤ π}, assuming that (
, 0) is an internal

point of this domain.
We move the ascending node crossing point (
, 0) to the origin of the reference

system by the variable change

τ�,0 : (
, 
′) −→ (k, k′) (15)

and we set
T
2

= τ�,0
[
T
2] = {(
− 
, 
′) : (
, 
′) ∈ T

2} .
Then we perform another variable change to eliminate the linear terms in the

quadratic form d2(κ) defined by (14). The inverse of the transformation used for
this purpose is

Ξ−1 : ψ −→ κ = T ψ + S (16)

where S = (S1, S2) ∈ R
2, ψ = (y′, y) ∈ R

2 are the new variables and T is a 2×2
real-valued invertible matrix.

Setting to zero the coefficients of the linear terms of the quadratic form in
the new variables ψ we obtain the equations

2 AS + B = 0 (17)

whose solutions are

S1 =
B2A12

det(A)
; S2 = −B2A11

det(A)
.

We can choose the matrix T such that

T tAT = I2
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Fig. 3. Description of the transformations of the integration domain T
2 with the two

coordinate changes (15), (16) used to bring the squared Wetherill function d2(�, �′) into
the form y2 + y′2 + (d+

min)
2 in the new variables (y′, y). Note that �

′
= 0 implies that

T
2
is symmetric with respect to the k axis.

(I2 is the 2× 2 identity matrix) by setting

T =
(

1/τ −σ/τρ
0 1/ρ

)

with

τ =
√
A11; ρ =

√
det(A)
A11

; σ = A12

√
1
A11

.

The coordinate change

Ξ : κ −→ ψ = R [κ− S] , (18)

where

R = T −1 =
(
τ σ
0 ρ

)
,

brings d2(κ) into the form

d2
(
Ξ−1(ψ)

)
= y2 + y′2 + (d+min)

2

in the new variables ψ, with

d+min = |d+nod|
{

1− a′2F2

det(A)

}1/2

. (19)

The domain T
2

is transformed into a parallelogram with two sides parallel to
the y′ axis (see Fig. 3).

Remark 4. Note that d+min is the minimal distance between the straight lines r
and r′.
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Using the variable changes (15), (18) and the transformation to polar coor-
dinates, whose inverse is

Π−1 :
(
r
θ

)
−→

(
y′

y

)
=
(
r cos θ
r sin θ

)

we obtain∫
T2

1
d
d
 d
′ =

1√
det(A)

∫
Ξ[T2]

1√
y2 + y′2 + (d+min)

2
dy dy′ =

=
1√

det(A)

∫
T

r√
r2 + (d+min)

2
dr dθ

(20)

where Ξ−1
[
Π−1 (T)

]
= T

2
.

Let us describe the domain T in details. We define the straight lines that
bound the integration domain Ξ

[
T
2
]

as

r1 = {(y, y′) : y′ =
σ

ρ
y + τ(π − S1)} ; r2 = {(y, y′) : y = ρ(π − 
− S2)} ;

r3 = {(y, y′) : y′ =
σ

ρ
y − τ(π + S1)} ; r4 = {(y, y′) : y = −ρ(π + 
 + S2)} .

The intersections of these lines with the y axis are

y1 = −ρ(π + 
 + S2) ; y2 = ρ(π − 
− S2) ;

while the intersections with the y′ axis are

y′1 = λ3(y1) = −σ(π + 
 + S2)− τ(π + S1)
y′2 = λ3(0) = −τ(π + S1)
y′3 = λ3(y2) = σ(π − 
− S2)− τ(π + S1)
y′4 = λ1(y1) = −σ(π + 
 + S2) + τ(π − S1)
y′5 = λ1(0) = τ(π − S1)
y′6 = λ1(y2) = σ(π − 
− S2) + τ(π − S1)

where λ1(y) = (σ/ρ)y + τ(π − S1) and λ3(y) = (σ/ρ)y − τ(π + S1).
We can then decompose the domain T into four parts (see Fig. 4)

T =
4⋃
j=1

{
(r, θ) ∈ R

2 : θj ≤ θ ≤ θj+1 and 0 ≤ r ≤ rj(θ)
}

where rj(θ), with j = 1 . . . 4, represent the lines rj delimiting Ξ[T
2
] in polar

coordinates:

r1(θ) =
ρτ(π − S1)

ρ cos θ − σ sin θ
; r2(θ) =

ρ(π − 
− S2)
sin θ

;

r3(θ) =
−ρτ(π + S1)
ρ cos θ − σ sin θ

; r4(θ) =
−ρ(π + 
 + S2)

sin θ
;
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Fig. 4. We show the decomposition of the integration domain used to compute the last
integral in (20) in polar coordinates

while θ1 = θ5 − 2π and θl, with l = 2 . . . 5, are the counter-clockwise angles
between the y′ axis and the vertexes vl seen from the origin of the axes (see Fig.
4):

0 < θ2 < θ3 < π < θ4 < θ5 < 2π ;

tan θ2 =
ρ(π − 
− S2)

σ(π − 
− S2) + τ(π − S1)
; tan θ3 =

ρ(π − 
− S2)
σ(π − 
− S2)− τ(π + S1)

;

tan θ4 =
ρ(π + 
 + S2)

σ(π + 
 + S2) + τ(π + S1)
; tan θ5 =

ρ(π + 
 + S2)
σ(π + 
 + S2)− τ(π − S1)

.

Using the previous decomposition for T and integrating in the r variable the
last expression in (20) we obtain

∫
T2

1
d
d
 d
′ =

1√
det(A)

·



4∑
j=1

∫ θj+1

θj

√
(d+min)

2
+ r2j (θ) dθ − 2πd+min


 . (21)

Note that the integrals in (21) are elliptic and the integrand functions are
bounded so that these integrals are differentiable functions of the orbital ele-
ments. We shall see that the loss of regularity of the averaged perturbing function
is due only to the term d+min.

3.7 Boundedness of the remainder function

When there is a crossing at the ascending node, then from the equations of the
orbits (8) and from Kepler’s equations (10) we deduce that Taylor’s development
of D2(κ) = D2(
, 
′) in a neighborhood of κ = (0, 0) is given by

D2(κ) = d2(κ) + O(|κ|3) (22)
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where O(|κ|3) is an infinitesimal of the same order as |κ|3 for |κ| → 0. We prove
the following
Lemma 2. If there is an ascending node crossing between the orbits, there exist
a neighborhood U0 of κ = (0, 0) and two positive constants B1, B2 such that

B1d
2(κ) ≤ D2(κ) ≤ B2d

2(κ) ∀κ ∈ U0.

Proof. First we notice that for d+nod = 0 we have d2(κ) = κtAκ, where A is
positive definite, hence there exist two positive constants C1, C2 such that

C1|κ|2 ≤ κtAκ ≤ C2|κ|2 ∀κ ∈ R
2. (23)

Using the relations (22) and (23) we obtain

lim
|κ|→0

D2(κ)
d2(κ)

= 1 ,

that implies the existence of the neighborhood U0 and of the constants B1, B2
as in the statement of the lemma.

We prove the following result:

Proposition 1. The remainder function 1/D− 1/d is bounded even if there is
an ascending node crossing.

Proof. If there are no crossings between the orbits the remainder function is
trivially bounded, in fact D(
, 
′) > 0 for each (
, 
′) ∈ T

2 and the minimum
value of d(
, 
′) is d+min that, for I �= 0, can be zero only if d+nod = 0 (see equation
(19)).

If there is a crossing at the ascending node we have to investigate the local
behavior of the remainder function in a neighborhood of (
, 
′) = (
, 0), where
both D and d can vanish. The boundedness of the remainder function can be
shown using the previous lemma: we know that there exists a neighborhood U0
and a positive constant B1 such that the relation

D(κ) ≥
√
B1d(κ)

holds for each κ ∈ U0. It follows that in this neighborhood the remainder function
can be bounded in the following way:∣∣∣∣ 1

D(κ)
− 1
d(κ)

∣∣∣∣ =
|d2(κ)−D2(κ)|

d(κ)D(κ)[d(κ) +D(κ)]
≤

≤ 1√
B1[1 +

√
B1]
· |d

2(κ)−D2(κ)|
|κ|3 · |κ|

3

d3(κ)
.

We observe that |d2(κ) − D2(κ)| = O(|κ|3) and that by (23) there is a positive
constant C1 such that d2(κ) ≥ C1|κ|2, so that there exists a constant L > 0 such
that ∣∣∣∣ 1

D(κ)
− 1
d(κ)

∣∣∣∣ ≤ L ∀κ ∈ U0 .
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Remark 5. Although the remainder function 1/D − 1/d is bounded, it is not
continuous in (
, 
′) = (
, 0) when there is a crossing at the ascending node.

3.8 The derivatives of the averaged perturbing function R

Kantorovich’s method is used to describe the singularities of the derivatives of
the averaged perturbing function with respect to Delaunay’s variables appearing
in equations (12).

Note that by the chain rule we can write

∂R

∂ED
=

∂R

∂EK
∂EK
∂ED

where EK = {e, I, ω,Ω} is a subset of the Keplerian elements of the asteroid and

∂EK
∂ED

=
[M O
O I2

]

in which I2 and O are the 2× 2 identity and zero matrixes, and

M = − 1
k
√
a

[
β/e 0

−cotanI/β 1/(β sin I)

]
.

Hence we can do the computation using the derivatives of R with respect to the
Keplerian elements e, I, ω (R does not depend on Ω).

We shall not need to perform the splitting of Kantorovich’s method to com-
pute the derivative with respect to the inclination I; in fact the derivative of
1/D with respect to I can be bounded by a function with a first order polar
singularity in u, u′, so it is Lebesgue integrable over T

2.
In the following we shall first prove that the derivatives of the remainder

function 1/D − 1/d are always Lebesgue integrable over T
2, even if the two

orbits intersect each other, so that the average of the remainder function is
differentiable: indeed its derivatives can be computed by exchanging the position
of the integral and differential operators as in (14). Then we shall see that if
there is an ascending node crossing, then a discontinuous term appears in the
derivatives of the average of 1/d and this is responsible of the discontinuity of the
derivatives of R. These derivatives admit two limit values at crossings (coming
from the regions defined by d+nod > 0 and d+nod < 0).

As the properties we intend to prove are invariant by coordinate changes, we
shall show them using the coordinates (u, u′) instead of (
, 
′).

The derivatives of the remainder function 1/D− 1/d.
Let us set υ = (u, u′) and ν = (v, v′) = (u − u, u′ − u′). We apply Taylor’s

formula with the integral remainder to the vector functions P (u), P ′(u′):


P (u) = P (u) + Pu(u) v +
∫ u

u

(u− s)Pss(s) ds

P ′(u′) = P ′(u′) + P ′u′(u
′) v′ +

∫ u′

u′
(u′ − t)P ′tt(t) dt .
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The functions defining the straight lines r(u) = r(
(u)) and r′(u′) = r′(
′(u′))
have the same Taylor’s development, up to the first order in |ν| = √v2 + v′2, as
P (u) and P ′(u′) respectively, so that we can write




r(u) = P (u) + Pu(u) v +
∫ u

u

(u− s)rss(s) ds

r′(u′) = P ′(u′) + P ′u′(u
′) v′ +

∫ u′

u′
(u′ − t)r′tt(t) dt .

We prove the following

Theorem 1. If there is an ascending node crossing at (u, u′) = (u, u′), the
derivatives of the remainder function 1/D − 1/d with respect to e, ω can be
bounded by functions having a first order polar singularity in u, u′, so they are
Lebesgue integrable over T

2.

Proof. We shall consider only the derivatives with respect to e: the proof for the
other derivatives is similar. First we note that

∂

∂e

[
1

D(υ)

]
= − 1

2D3(υ)
∂

∂e

[
D2(υ)

]
;

∂

∂e

[
1

d(υ)

]
= − 1

2d3(υ)
∂

∂e

[
d2(υ)

]
.

Let us write 〈 , 〉 for the Euclidean scalar product. We have

∂

∂e

[
D2(υ)

]
= D2

e,0(υ) + D2
e,1(υ) + D2

e,2(υ) (24)

where

D2
e,0(υ) = 2

〈
∂

∂e
[P (u)− P ′(u′)] , P (u)− P ′(u′)

〉

D2
e,1(υ) = 2

〈
∂

∂e
[P (u)− P ′(u′)] , Pu(u) v − P ′u′(u

′) v′
〉

D2
e,2(υ) = 2

〈
∂

∂e
[P (u)− P ′(u′)] ,

∫ u

u

(u− s)Pss(s) ds−
∫ u′

u′
(u′ − t)P ′tt(t) dt

〉

and
∂

∂e

[
d2(υ)

]
= d2e,0(υ) + d2e,1(υ) + d2e,2(υ) (25)

where

d2e,0(υ) = 2
〈
∂

∂e
[r(u)− r′(u′)] , P (u)− P ′(u′)

〉

d2e,1(υ) = 2
〈
∂

∂e
[r(u)− r′(u′)] , Pu(u) v − P ′u′(u

′) v′
〉

d2e,2(υ) = 2

〈
∂

∂e
[r(u)− r′(u′)] ,

∫ u

u

(u− s)rss(s) ds−
∫ u′

u′
(u′ − t)r′tt(t) dt

〉
.
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If we set the crossing conditions P (u) = P ′(u′) we obtain

D2
e,0(υ) = d2e,0(υ) = 0

and, in particular, the constant terms in Taylor’s developments of ∂D2/∂e and
∂d2/∂e vanish.

The terms defined by D2
e,2 and d2e,2 are at least infinitesimal of the second

order with respect to |ν| as υ → (u, u′), so that the first order terms in |ν| at
crossing can be given only by D2

e,1 and d2e,1.
Using the theorems on the integrals depending on a parameter we obtain

∂

∂e

[∫ u

u

(u− s)Pss(s) ds−
∫ u′

u′
(u′ − t)P ′tt(t) dt

]
=

∫ u

u

(u− s)∂Pss
∂e

(s) ds− ∂u

∂e
Puu(u) v −

∫ u′

u′
(u′ − t)∂P

′
tt

∂e
(t) dt+

∂u′

∂e
P ′u′u′(u

′) v′

∂

∂e

[∫ u

u

(u− s)rss(s) ds−
∫ u′

u′
(u′ − t)r′tt(t) dt

]
=

∫ u

u

(u− s)∂rss
∂e

(s) ds− ∂u

∂e
ruu(u) v −

∫ u′

u′
(u′ − t)∂r

′
tt

∂e
(t) dt+

∂u′

∂e
r′u′u′(u

′) v′

so that these two expressions are at least infinitesimal of the first order with
respect to |ν|. As these terms are multiplied by first order terms in the expressions
of D2

e,1 and d2e,1, they give rise to at least second order terms.
We can conclude that the first order terms in the expressions (24) and (25)

are equal and they are given by

2
〈
∂

∂e
[P (u)− P ′(u′)]−

[
∂u

∂e
Pu(u)− ∂u′

∂e
P ′u′(u

′)
]
, Pu(u) v − P ′u′(u

′) v′
〉

;

therefore the asymptotic developments of the e-derivatives of D2(υ) and d2(υ)
in a neighborhood of υ = (u, u′) are

∂

∂e

[
D2(υ)

]
= α v + β v′ + rD(υ);

∂

∂e

[
d2(υ)

]
= α v + β v′ + rd(υ)

where α, β are independent on u, u′ and rD(υ), rd(υ) are infinitesimal of the
second order with respect to |ν| as υ → (u, u′).

Using the decomposition[
1

D3 −
1
d3

]
=
[

1
D
− 1

d

] [
1

D2 +
1

Dd
+

1
d2

]
,

the boundedness of the remainder function 1/D−1/d and lemma 2 (that also hold
in the (u, u′) coordinates), we conclude that there exist two constants L1, L2 > 0
such that∣∣∣∣ ∂∂e

[
1

D(υ)

]
− ∂

∂e

[
1

d(υ)

]∣∣∣∣ =
1
2

∣∣∣∣
{[

1
D3(υ)

− 1
d3(υ)

]
(α v + β v′) +

+
1

D3(υ)
rD(υ)− 1

d3(υ)
rd(υ)

}∣∣∣∣ ≤ L1
1
|υ| + L2
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in a neighborhood of υ = (u, u′) and the theorem is proven.

Singularities of the {e, ω}-derivatives of the average of 1/d.

As det(A) > 0 and (
, 0) is in the interior part of T
2, we have d2min+r2j (θ) > 0

for each θ ∈ [θj , θj+1] and for each j = 1 . . . 4. Then we can use again the theorem
of differentiation under the integral sign and compute, for instance, the derivative
of the average of 1/d with respect to e as

∂

∂e

∫
T2

1
d
d� d�′ =

∂

∂e

[
1√

det(A)

]
·
{

4∑
j=1

∫ θj+1

θj

√
(d+
min)

2 + r2
j (θ) dθ − 2πd+

min

}
+

+

[
1√

det(A)

]
·



1
2

4∑
j=1

∫ θj+1

θj

∂

∂e
[(d+

min)
2
+ r2

j (θ)]√
(d+
min)

2 + r2
j (θ)

dθ − 2π ∂
∂e
d+
min


 .

(26)
We have similar formulas for the derivatives with respect to ω, obtained simply
by substitution of the partial derivative operators.

The discontinuities present in the terms

∂

∂e
d+min ;

∂

∂ω
d+min ;

are responsible of the discontinuities in the derivatives of the averaged perturbing
function that produce a sort of crests in the surfaces representing this function
(see Fig. 5) and cause the loss of regularity in its level lines, where the weak
averaged solutions lie. The detailed analytical formulas for the discontinuities in
the derivatives of R can be found in [10], [6].

4 Secular evolution theory

The generalized averaging principle has been used in [10] to define a method to
compute the secular evolution of the NEAs in the framework of a Solar System
with the planets on circular coplanar orbits. We shall review this method in
the following of this section and we shall describe some features of the secular
dynamics of NEAs.

First we note that the averaged Hamiltonian H is invariant under the sym-
metries

ω −→ −ω
ω −→ π − ω

ω −→ π + ω ;

this allows to draw the level lines of the averaged Hamiltonian, on which the so-
lution curves are confined, simply knowing their shape in a subset of the reduced
phase space (ω, e) of the form

{(ω, e) : k π/2 ≤ ω ≤ (k + 1)π/2 , 0 ≤ e ≤ emax}
with k ∈ Z.
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Fig. 5. We draw the graphic of the averaged perturbing function (top) and its level
lines (bottom) in the plane (ω, e) for the Near Earth Asteroid 2000 CO101 (ω is in
degrees in the figure). The loss of regularity at the node crossing lines with the Earth
is particularly evident for this object.
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4.1 The secular evolution algorithm

The numerical method used in [10] to solve Hamilton’s equations (12) is an
implicit Runge-Kutta-Gauss algorithm of order 6, which is also symplectic (see
[23]).

Note that Kantorovich’s method, used to study the regularity of the averaged
perturbing function, gives us analytical formulas for the discontinuities of the
derivatives at the right hand sides of (12).

The Runge-Kutta-Gauss methods use sub-steps which include neither the
starting point nor the final point of the step being computed, this allows to
avoid the computation of the values of the derivatives of R at the node crossing
points, where they are defined in a twofold way. We resort to the following
procedure (which had already been used in [18]): every time the asteroid orbit
is close enough to a node crossing line, the standard iteration scheme known as
regula falsi is used to set the second extreme point of the step exactly on that
line; as the computation of the right hand sides of (12) is performed only at the
intermediate points of the integration step, we avoid the computation at node
crossings.

X X X
X X X

X
X

X

X X X
COMPUTED SOLUTION

NODE CROSSING

     LINE

DERIVATIVE JUMP

CORRECTION due to the

Fig. 6. Graphical description of the algorithm employed in this numerical integration:
it is an implicit Runge-Kutta-Gauss method, symplectic, of order 6. In an integration
step, delimited in the figure by two consecutive small circles, we compute the derivatives
of R only at the intermediate points marked with crosses.

When the node crossing point is reached within the required precision, then a
correction given by the explicit formulas for the discontinuities of the derivatives
of R is applied before restarting the integration (see Fig. 6).

An additional regula falsi is used to compute the value of the solutions of
the averaged equations exactly at the symmetry lines in the plane (ω, e) (that
is at the lines of the form ω = kπ/2 with k ∈ Z); the computation of the
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Fig. 7. Secular evolution figure for 2001 QJ142 on the background of the level lines of
the averaged perturbing function. The node crossing lines with the Earth (E) are also
drawn.

secular evolution of a NEA requires to compute the solution of the equations (12)
between two successive crossings of the symmetry lines. The complete evolution
is then obtained by means of the symmetries of R.

Kantorovich’s decomposition of the integrals (like in (14)) is used not only
when the final point of the integration step is on a node crossing line, but also
when the solution is very close to a node crossing. This allows to stabilize the
computation when the nodal distance is small and the integrand functions can
be bounded only by very large constants.

4.2 Different dynamical behavior of NEAs

We describe the secular evolution of the Near Earth Asteroids 2001 QJ142 and
1999 AN10: these celestial objects show two very different kinds of dynamical
behavior.

In Fig. 7 we can see that the perihelion argument ω of 2001 QJ142 circulates;
the loss of regularity of the solution curve, corresponding to a crossing at the
ascending node with the Earth, is particularly enhanced in this figure.

In Fig. 8 we have ω-libration for 1999 AN10. Note that it starts its secular
evolution with a double crossing with the orbit of the Earth, that gives it two
possibilities to approach the Earth for each revolution and makes this object
particularly dangerous. This asteroid has been intensively studied as a possible
Earth impactor for the years 2039 (see [16]) and 2044 (see [17]).

In addition to this kind of libration, symmetric with respect to the lines
ω = kπ/2 (k ∈ Z), it is possible to have a sort of asymmetric librations, as it is
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shown by some of the level lines of Fig. 9 in which the evolution of the asteroid
(2100) Ra Shalom is shown. It is possible to choose initial values for e and ω,
defining a fictitious object with the same value of the integral a as (2100) Ra
Shalom, such that an asteroid starting with those values is constrained into a
very narrow asymmetric libration.

200 250 300 350 400 450 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

omega

ec
ce

nt
ric

ity

a=1.459 Imax=50.64

V

E

M

Fig. 8. Secular evolution figure for 1999 AN10. The node crossing lines with the Earth
(E) and Venus (V) are drawn.

We remark that asymmetric librations have a very low probability to occur:
all the known NEAs examined so far do not show this kind of behavior.

5 Proper elements for NEAs

In the study of orbit dynamics a very important role is played by the integrals
of the motion, that is by quantities that are constant during the time evolution
of a dynamical system.

When the dynamics is non integrable, as it is the case for the N -body problem
(N ≥ 3), it is also useful to compute quantities that are nearly constant during
the motion. We give the following definition:

Definition 6. The proper elements are quasi–integrals of the motion, that is
quantities that change very slowly with time and can be considered approxima-
tively constant over time spans not too long.

The first to employ the concept of proper elements was Hirayama [12]: he
defined a linear theory to identify asteroid families in the main belt. The identi-
fication of families together with the understanding of the dynamical structure
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Fig. 9. Secular evolution figure for (2100) Ra Shalom. The four asymmetric libration
regions are so small that they cannot be seen in the figure, but their presence can be de-
tected by seeing the shape of the level lines near e = 0.25 and ω = 240◦, 300◦, 420◦, 480◦.

of the asteroid belt (e.g. the relevance of secular resonances) are two important
reasons for the computation of the proper elements for MBAs.

There are presently three different possible methods to compute these quan-
tities:

1. An analytical theory by Milani and Kneẑević [19],[20],[21] based on series
expansion in eccentricity and inclination, particularly suitable for orbits with
low eccentricity and low inclination (< 17◦). The proper elements computed
in [20],[21] have been proven to be stable over time scales of the order of 107

years.
2. A semianalytic theory by Lemâıtre and Morbidelli [15], which is more ap-

propriate for the orbits with either large eccentricities or large inclinations.
This method is based on the classical averaging method in a revisited ver-
sion by Henrard [11]. A similar method had already been used by Williams
[26],[27],[28] to obtain a set of proper elements that led to the understanding
of the secular resonances resulting from two secular frequencies being equal.

3. A synthetic theory by Kneẑević and Milani [14] based on the computation of
the asteroid orbits by pure numerical integration; the short periodic perturba-
tions are then removed by a filtering process performed during the integration.
This recent theory allows to obtain a high accuracy of the elements; on the
other hand it requires CPU times longer than the two preceding methods.

Almost all the NEAs are planet crossing, and the singularities coming from
the possibility of collisions result in the strong divergence of the series used in the
analytical theory and in the divergence of the integrals of the classical averaging
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principle used in the semianalytic theory. Furthermore the strong chaoticity of
crossing orbits and the very short integration steps to be chosen in this case
make the synthetic theory inapplicable on large scale: in fact we have to use
several values of the initial phase on the orbit for each NEA and in this case it
would require very long computational times.

On the other hand the reasons to compute proper elements are very different
in the case of NEAs and the required stability times are only of the order of 10 000
to 100 000 years. Over longer time spans the dynamics is dominated by large
changes in the orbital elements, including the semimajor axis, resulting from the
close approaches with the planets and from the effects of secular resonances.

We wish to compute proper elements for NEAs mainly for the following
reasons:

1. to detect the possibility of collision of Earth-crossing objects and to compute
its probability;

2. to identify the objects whose long term evolution is controlled by one or more
of the main secular resonances;

3. to identify meteor streams (sets of very small objects, that can be observed
only when they are crossing the orbit of the Earth) and to give a criterion to
be used in the identification of their parent bodies.

We give the definition of proper elements for Near Earth Asteroids and we
explain how to compute them using the generalized averaging principle explained
in section 3.

Given the osculating orbit of a NEA, represented by its Keplerian elements
(a, e, I, ω,Ω) at a given time t, the following quantities are constant during the
averaged motion in the framework of the circular coplanar case:

a, emin, emax, Imin, Imax ;

they are respectively the semimajor axis and the minimum and maximum value
of the averaged eccentricity and the averaged inclination.

We can consider as set of proper elements either

{a, emin, Imax} or {a, emax, Imin} .

Remark 6. If we consider an ω-librating orbit we can also define

ωmin, ωmax,

that are the minimum and maximum value of the averaged perihelion argument.
These quantities are also constant during the averaged motion and can give
additional informations to understand the dynamics of the objects that we are
studying.

We can also use a set of proper elements in which the extreme values of
the eccentricity and inclination are substituted by the secular frequencies of the
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longitude of perihelion g and the longitude of the node s in case of ω-circulation.
If ω is librating we can use the libration frequency lf in place of g.

The computation of these proper frequencies requires some additional com-
ments:

Proposition 2. If ω is circulating, then let t0 and t1 be the times of passage
at 0 and π/2 and let Ωt0 , Ωt1 be the corresponding values of the longitude of the
node. We have the following formulas to compute the secular frequencies of the
argument of perihelion g − s and of the longitude of the node s:

g − s =
2π

4(t1 − t0)
; s =

Ωt1 −Ωt0
t1 − t0

.

If ω is symmetrically librating, then let τ0 and τ1 be two consecutive times of
passage at the same integer multiple of π/2 and let Ωτ0 , Ωτ1 be the corresponding
values of the longitude of the node. We can compute the frequency of the longitude
of the node s and the libration frequency lf by the following formulas:

s =
Ωτ1 −Ωτ0
τ1 − τ0

; lf = ± 2π
2(τ1 − τ0)

,

where the sign has to be chosen negative for clockwise libration.

Proof. The formula for g − s is an immediate consequence of the fact that the
period of circulation of ω must be four times the time interval required by an
increase by π/2 of ω.

The proper frequency s has to be computed taking into account that the
node has a secular precession, but also long periodic oscillations controlled by
the argument 2ω.

The averaged Hamiltonian does not contain Ω because of the invariance with
respect to rotation around the z axis; according to D’Alembert’s rules (see [24])
it contains only the cosine of 2ω, thus the perturbative equation of motion for
Ω is

dΩ

dt
= −∂R

∂Z
(2ω) .

If ω is circulating it is possible to change (at least locally) variable and write the
equation

dΩ

dω
=

∂R/∂Z

∂R/∂G
= F (cos(2ω))

with a right hand side containing only cos(2ω). The solution for Ω as a function
of ω is:

Ω(ω) = α ω + f(sin(2ω))

and the function f(sin(2ω)) is zero for ω = 0, π/2, thus

Ωt1 −Ωt0 = α π/2
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identifies the secular part of the evolution of Ω, whose frequency can be computed
by

s =
Ωt1 −Ωt0
t1 − t0

.

The symmetric libration cases are different because ω returns to the same
multiple of π/2 after a time interval τ1 − τ0, while in the same time span Ω has
changed by Ωτ1 − Ωτ0 . Then g − s is not a proper frequency (its secular part
is by definition zero), and by arguments that are similar to the ones above, the
libration frequency lf and the secular frequency of the node s can be computed
by

lf = ± 2π
2(τ1 − τ0)

; s =
Ωτ1 −Ωτ0
τ1 − τ0

.

We agree that the negative sign for lf is chosen for clockwise librations.

6 Reliability tests

A numerical test on the reliability of the weak averaged solutions and of the
proper elements for NEAs obtained with the generalized averaging principle can
be found in [7]. A sample of orbits has been taken into account and the weak
averaged solutions for the objects of this sample have been compared with their
corresponding quantities obtained by pure numerical integrations using initial
conditions that correspond to circular coplanar orbits for the planets.

The results of this comparison are satisfactory: the cases in which the secular
evolution theory fails are generally the ones for which it is not valid a priori,
that is low order mean motion resonances and close approaches with one or more
planets, that could change the value of the semimajor axis, which is assumed to
be constant in the averaging theory.

Table 1. Proper elements table for the asteroids (433) Eros and (1981) Midas: the
angles are given in degrees. In case of ω-circulation we define ωmin = −∞, ωmax = +∞.
AT means Averaged Theory, while NI means Numerical Integrations.

(433) Eros (1981) Midas

Prop. El. AT NI AT NI
emin 0.22285 0.22272 0.34872 0.34978
emax 0.23307 0.23289 0.65075 0.65029
Imin 10.06653 10.06472 39.78069 39.79393
Imax 10.82960 10.83039 51.49418 51.43053
ωmin −∞ −∞ 248.61698 248.51999
ωmax +∞ +∞ 291.38302 291.56100

The agreement of the elements for the sample selected in [7] is of the order of
5×10−3 both for the proper eccentricity and the proper inclination (if considered
in radians) over a time span of the order of 104 yrs.
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Table 2. Proper frequencies table for (433) Eros and (1981) Midas: the units are arc-
seconds per year. In case of ω-circulation we define lf = 0 while in case of ω-libration
we define g = s.

(433) Eros (1981) Midas

Prop. Freq. AT NI AT NI
g 14.675 14.876 −25.625 −25.650
s −21.101 −21.136 −25.625 −25.650
lf 0 0 −45.672 −45.422

In Tables 1,2 we present the set of proper elements and proper frequencies
of two objects of the sample: 433 (Eros) and (1981) Midas, that are respectively
ω-circulating and ω-librating. The orbital elements used for these asteroids are
in Table 3.

Table 3. Orbital elements used in the comparison for (433) Eros and for (1981) Midas.

Body a (AU) ω (◦) Ω (◦) e I (◦)
(433) Eros 1.45823 178.640 304.411 0.222863 10.829
(1981) Midas 1.77611 267.720 357.097 0.650113 39.831

In [7] there is also a comparison of the previous results with full numerical
integrations starting with the actual eccentricity and inclination of the planets:
we observe that the difference between the proper elements obtained in both
ways for the selected sample is not dramatic (at least for the time scale of this
integration), but the crossing times between the orbits are not reliable at all if we
do not take into account the eccentricity and inclination of the planets and the
computation of these times is useful for several applications such as the study of
the possibility of collision. Thus the need of a more accurate averaging theory is
evident.

7 Generalized averaging principle
in the eccentric–inclined case

Recently we have proven that the generalized averaging theory, defined in Section
3, can be extended including the eccentricities and the inclinations of the planets.
We give in this section only the main idea of this generalization; the reader
interested can found a complete explanation of the theory in [5],[6].

Also in this framework we can study the case of only one perturbing planet
and we can obtain the total perturbation by the sum of the contribution of
each planet in the model. We can write the averaged perturbing function R
as a function of a particular set of variables, called mutual elements, that are
almost everywhere regular functions of Delaunay’s variables and are defined by
the mutual position of the osculating orbits of the asteroid and the planet. Then
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Fig. 10. The mutual reference frame: the ascending mutual node is marked with as-
terisks.

the equations of motion for the asteroid become



˙̃
G =

∂R

∂EM
∂EM
∂g

˙̃
Z =

∂R

∂EM
∂EM
∂z




˙̃g = − ∂R

∂EM
∂EM
∂G

˙̃z = − ∂R

∂EM
∂EM
∂Z

(27)

where EM is a suitable subset of the mutual elements.
First note that the definitions of mutual nodal line and mutual nodes make

sense even in the elliptic case; but we observe that we have generally a different
mutual nodal line for each planet while in the circular coplanar case it is the
same for all of them.

7.1 The mutual reference frame

We give a short description of the mutual elements. Let us consider two elliptic
non-coplanar osculating orbits of an asteroid and a planet with a common focus:
we give the following

Definition 7. We call mutual reference frame a system Oxyz (see Fig. 10) such
that the x axis is along the mutual nodal line and is directed towards the mutual
ascending node; the y axis lies on the planet orbital plane, so that the orbit of
the planet lies on the (x, y) plane. We shall use the further convention that the
positive z axis is oriented as the angular momentum of the planet.

Let ωM , ω′M be the mutual pericenter arguments (the angles between the x
axis and the pericenters) of the orbit of the asteroid and of the planet respec-
tively, and let IM be the mutual inclination between the two conics. We define
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as mutual elements the set of variables

{a, e, a′, e′, ωM , ω′M , IM}

and we set EM = {a, e, ωM , ω′M , IM}.
Note that we can express the mutual variables ωM , ω′M , IM as functions of the

Keplerian elements ω,Ω,I, ω′,Ω′,I ′; furthermore the derivatives of the mutual
elements with respect to Delaunay’s variables appearing in equations (27) can
be easily computed by means of the Keplerian elements EK of the asteroid:

∂EM
∂ED

=
∂EM
∂EK

∂EK
∂ED

.

8 Conclusions

The generalized averaging principle and the related results reviewed in this paper
have been applied to the search for parent bodies of meteor streams (using
appropriate variables, like the ones in [25]) and to the computation of the secular
evolution of the MOID (using algebraic methods as in [4]). We think that the
extension of the theory including the eccentricity and inclination of the planets
will be very useful to improve the accuracy of the results of such applications.
There are additional possible applications of this theory, that we have still to
investigate, to the computation of the collision probability between a NEA and
the Earth.
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